These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38073198)
1. Identifying drug targets with thermal proteome profiling using IBT-16plex. Shi Z; Ren Y; Li S; Hao P Rapid Commun Mass Spectrom; 2024 Jan; 38(1):e9673. PubMed ID: 38073198 [TBL] [Abstract][Full Text] [Related]
2. New Set of Isobaric Labeling Reagents for Quantitative 16Plex Proteomics. Ning X; Li Q; Zi J; Mei Z; Liu J; Zhang Y; Bi M; Ren Y; Liu X; Lv C; Yao H; Sun J; Rao F; Li S; Liu S Anal Chem; 2023 Apr; 95(13):5788-5795. PubMed ID: 36958307 [TBL] [Abstract][Full Text] [Related]
3. TMTpro-18plex: The Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing. Li J; Cai Z; Bomgarden RD; Pike I; Kuhn K; Rogers JC; Roberts TM; Gygi SP; Paulo JA J Proteome Res; 2021 May; 20(5):2964-2972. PubMed ID: 33900084 [TBL] [Abstract][Full Text] [Related]
4. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. Zinn N; Werner T; Doce C; Mathieson T; Boecker C; Sweetman G; Fufezan C; Bantscheff M J Proteome Res; 2021 Mar; 20(3):1792-1801. PubMed ID: 33621079 [TBL] [Abstract][Full Text] [Related]
5. Tandem Mass Tags for Comparative and Discovery Proteomics. Pagel O; Kollipara L; Sickmann A Methods Mol Biol; 2021; 2228():117-131. PubMed ID: 33950487 [TBL] [Abstract][Full Text] [Related]
6. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Perrin J; Werner T; Kurzawa N; Rutkowska A; Childs DD; Kalxdorf M; Poeckel D; Stonehouse E; Strohmer K; Heller B; Thomson DW; Krause J; Becher I; Eberl HC; Vappiani J; Sevin DC; Rau CE; Franken H; Huber W; Faelth-Savitski M; Savitski MM; Bantscheff M; Bergamini G Nat Biotechnol; 2020 Mar; 38(3):303-308. PubMed ID: 31959954 [TBL] [Abstract][Full Text] [Related]
7. Scaled-Down Thermal Profiling and Coaggregation Analysis of the Proteome for Drug Target and Protein Interaction Analysis. Lu X; Liao B; Sun S; Mao Y; Wu Q; Tian R; Tan CSH Anal Chem; 2023 Sep; 95(37):13844-13854. PubMed ID: 37656141 [TBL] [Abstract][Full Text] [Related]
8. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins. Ruan C; Ning W; Liu Z; Zhang X; Fang Z; Li Y; Dang Y; Xue Y; Ye M ACS Chem Biol; 2022 Jan; 17(1):252-262. PubMed ID: 34989232 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Proteome Data Analysis of Tandem Mass Tags Labeled Samples. Pagel O; Kollipara L; Sickmann A Methods Mol Biol; 2021; 2228():409-417. PubMed ID: 33950506 [TBL] [Abstract][Full Text] [Related]
10. Proteome Integral Solubility Alteration (PISA) Assay in Mammalian Cells for Deep, High-Confidence, and High-Throughput Target Deconvolution. Zhang X; Lytovchenko O; Lundström SL; Zubarev RA; Gaetani M Bio Protoc; 2022 Nov; 12(22):. PubMed ID: 36532690 [TBL] [Abstract][Full Text] [Related]
11. Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins. Childs D; Bach K; Franken H; Anders S; Kurzawa N; Bantscheff M; Savitski MM; Huber W Mol Cell Proteomics; 2019 Dec; 18(12):2506-2515. PubMed ID: 31582558 [TBL] [Abstract][Full Text] [Related]
12. Proteomic Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples from Formalin-Fixed Paraffin-Embedded Archives. Kuras M; Woldmar N; Kim Y; Hefner M; Malm J; Moldvay J; Döme B; Fillinger J; Pizzatti L; Gil J; Marko-Varga G; Rezeli M J Proteome Res; 2021 Jan; 20(1):1027-1039. PubMed ID: 33301673 [TBL] [Abstract][Full Text] [Related]
13. Comparative Evaluation of Proteome Discoverer and FragPipe for the TMT-Based Proteome Quantification. He T; Liu Y; Zhou Y; Li L; Wang H; Chen S; Gao J; Jiang W; Yu Y; Ge W; Chang HY; Fan Z; Nesvizhskii AI; Guo T; Sun Y J Proteome Res; 2022 Dec; 21(12):3007-3015. PubMed ID: 36315902 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. George AL; Sidgwick FR; Watt JE; Martin MP; Trost M; Marín-Rubio JL; Dueñas ME J Proteome Res; 2023 Aug; 22(8):2629-2640. PubMed ID: 37439223 [TBL] [Abstract][Full Text] [Related]
15. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Li J; Van Vranken JG; Pontano Vaites L; Schweppe DK; Huttlin EL; Etienne C; Nandhikonda P; Viner R; Robitaille AM; Thompson AH; Kuhn K; Pike I; Bomgarden RD; Rogers JC; Gygi SP; Paulo JA Nat Methods; 2020 Apr; 17(4):399-404. PubMed ID: 32203386 [TBL] [Abstract][Full Text] [Related]
16. STPP-UP: An alternative method for drug target identification using protein thermal stability. Zijlmans DW; Hernández-Quiles M; Jansen PWTC; Becher I; Stein F; Savitski MM; Vermeulen M J Biol Chem; 2023 Nov; 299(11):105279. PubMed ID: 37742922 [TBL] [Abstract][Full Text] [Related]
17. High-throughput drug target discovery using a fully automated proteomics sample preparation platform. Wu Q; Zheng J; Sui X; Fu C; Cui X; Liao B; Ji H; Luo Y; He A; Lu X; Xue X; Tan CSH; Tian R Chem Sci; 2024 Feb; 15(8):2833-2847. PubMed ID: 38404368 [TBL] [Abstract][Full Text] [Related]
18. The Introduction of Detergents in Thermal Proteome Profiling Requires Lowering the Applied Temperatures for Efficient Target Protein Identification. Ye Y; Li K; Ma Y; Zhang X; Li Y; Yu T; Wang Y; Ye M Molecules; 2023 Jun; 28(12):. PubMed ID: 37375414 [TBL] [Abstract][Full Text] [Related]
19. Drug Target Identification in Tissues by Thermal Proteome Profiling. Mateus A; Kurzawa N; Perrin J; Bergamini G; Savitski MM Annu Rev Pharmacol Toxicol; 2022 Jan; 62():465-482. PubMed ID: 34499524 [TBL] [Abstract][Full Text] [Related]
20. Reagents for Isobaric Labeling Peptides in Quantitative Proteomics. Ren Y; He Y; Lin Z; Zi J; Yang H; Zhang S; Lou X; Wang Q; Li S; Liu S Anal Chem; 2018 Nov; 90(21):12366-12371. PubMed ID: 30260629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]