These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38073335)

  • 1. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor.
    Cheng H; Li J; Meng T; Shu D
    Small; 2024 May; 20(20):e2308804. PubMed ID: 38073335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors.
    Huang S; Shi XR; Sun C; Duan Z; Ma P; Xu S
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Storage Performance of Electrode Materials Derived from Manganese Metal-Organic Frameworks.
    Ryoo G; Kim SK; Lee DK; Kim YJ; Han YS; Jung KH
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives.
    Wang T; Chen S; Chen KJ
    Chem Rec; 2023 Jun; 23(6):e202300006. PubMed ID: 36942948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridization of metal-organic frameworks and MXenes: Expanding horizons in supercapacitor applications.
    Gaba L; Siwach P; Aggarwal K; Dahiya S; Punia R; Maan AS; Singh K; Ohlan A
    Adv Colloid Interface Sci; 2024 Oct; 332():103268. PubMed ID: 39121831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications.
    Wang T; Lei J; Wang Y; Pang L; Pan F; Chen KJ; Wang H
    Small; 2022 Aug; 18(32):e2203307. PubMed ID: 35843875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes.
    Liu Q; Li R; Li J; Zheng B; Song S; Chen L; Li T; Ma Y
    Chemistry; 2024 May; 30(30):e202400157. PubMed ID: 38520385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Road Map for In Situ Grown Binder-Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors.
    Dennyson Savariraj A; Justin Raj C; Kale AM; Kim BC
    Small; 2023 May; 19(20):e2207713. PubMed ID: 36799137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable Synthesis of Manganese Organic Phosphate with Different Morphologies and Their Derivatives for Supercapacitors.
    Zhao J; Jing Q; Zhou T; Zhang X; Li W; Pang H
    Molecules; 2024 Sep; 29(17):. PubMed ID: 39275034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube Based Metal-Organic Framework Hybrids From Fundamentals Toward Applications.
    Chronopoulos DD; Saini H; Tantis I; Zboƙil R; Jayaramulu K; Otyepka M
    Small; 2022 Jan; 18(4):e2104628. PubMed ID: 34894080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOFs-Graphene Composites Synthesis and Application for Electrochemical Supercapacitor: A Review.
    Shinde SK; Kim DY; Kumar M; Murugadoss G; Ramesh S; Tamboli AM; Yadav HM
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review.
    Vinodh R; Babu RS; Sambasivam S; Gopi CVVM; Alzahmi S; Kim HJ; de Barros ALF; Obaidat IM
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage.
    Li Y; Xu Y; Yang W; Shen W; Xue H; Pang H
    Small; 2018 Jun; 14(25):e1704435. PubMed ID: 29750438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior Electrochemical Performance of Pristine Nickel Hexaaminobenzene MOF Supercapacitors Fabricated by Electrophoretic Deposition.
    Wechsler SC; Amir FZ
    ChemSusChem; 2020 Mar; 13(6):1491-1495. PubMed ID: 31814285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability.
    Kazemi SH; Hosseinzadeh B; Kazemi H; Kiani MA; Hajati S
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23063-23073. PubMed ID: 29882650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.
    Salunkhe RR; Kaneti YV; Yamauchi Y
    ACS Nano; 2017 Jun; 11(6):5293-5308. PubMed ID: 28613076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion.
    He B; Zhang Q; Pan Z; Li L; Li C; Ling Y; Wang Z; Chen M; Wang Z; Yao Y; Li Q; Sun L; Wang J; Wei L
    Chem Rev; 2022 Jun; 122(11):10087-10125. PubMed ID: 35446541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.