BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38073359)

  • 1. Local spatial navigation or "steering" in patients with vestibular loss in a virtual reality environment.
    Perez-Heydrich C; Pile M; Padova D; Cevallos A; Newman P; McNamara TP; Sayyid ZN; Agrawal Y
    J Vestib Res; 2023; 33(6):377-383. PubMed ID: 38073359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance in Real World- and Virtual Reality-Based Spatial Navigation Tasks in Patients With Vestibular Dysfunction.
    Biju K; Wei EX; Rebello E; Matthews J; He Q; McNamara TP; Agrawal Y
    Otol Neurotol; 2021 Dec; 42(10):e1524-e1531. PubMed ID: 34766948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze.
    Gammeri R; Léonard J; Toupet M; Hautefort C; van Nechel C; Besnard S; Machado ML; Nakul E; Montava M; Lavieille JP; Lopez C
    J Neurol; 2022 Aug; 269(8):4333-4348. PubMed ID: 35306619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Virtual Reality Simulation to Identify Vision-Related Disability in Patients With Glaucoma.
    Lam AKN; To E; Weinreb RN; Yu M; Mak H; Lai G; Chiu V; Wu K; Zhang X; Cheng TPH; Guo PY; Leung CKS
    JAMA Ophthalmol; 2020 May; 138(5):490-498. PubMed ID: 32191274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting real world spatial disorientation in Alzheimer's disease patients using virtual reality navigation tests.
    Puthusseryppady V; Morrissey S; Spiers H; Patel M; Hornberger M
    Sci Rep; 2022 Aug; 12(1):13397. PubMed ID: 35927285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisensory Influences on Driver Steering During Curve Navigation.
    Macuga KL
    Hum Factors; 2019 Mar; 61(2):337-347. PubMed ID: 30320509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using virtual reality to assess vestibulo-visual interaction in people with Parkinson's disease compared to healthy controls.
    Hawkins KE; Paul SS; Chiarovano E; Curthoys IS
    Exp Brain Res; 2021 Dec; 239(12):3553-3564. PubMed ID: 34562106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual Reality for Spatial Navigation.
    Jeung S; Hilton C; Berg T; Gehrke L; Gramann K
    Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of virtual reality for spatial navigation research across the adult lifespan.
    Diersch N; Wolbers T
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Vestibular Conflict Mitigation in Virtual Reality Using Galvanic Vestibular Stimulation.
    Pradhan GN; Galvan-Garza RC; Perez AM; Stepanek J; Cevette MJ
    Aerosp Med Hum Perform; 2022 May; 93(5):406-414. PubMed ID: 35551727
    [No Abstract]   [Full Text] [Related]  

  • 12. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.
    Jandl NM; Sprenger A; Wojak JF; Göttlich M; Münte TF; Krämer UM; Helmchen C
    Neuroscience; 2015 Oct; 305():257-67. PubMed ID: 26255675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of the triangle completion test in the real-world and in virtual reality.
    McLaren R; Chaudhary S; Rashid U; Ravindran S; Taylor D
    Front Hum Neurosci; 2022; 16():945953. PubMed ID: 36034112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in Navigation Controls and Field-of-View Modes Affect Cybersickness Severity and Spatiotemporal Gait Patterns After Exposure to Virtual Environments.
    Lin MB; Wu B; Cheng SW
    Hum Factors; 2024 Jul; 66(7):1942-1960. PubMed ID: 37501376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibular Loss in Older Adults Is Associated with Impaired Spatial Navigation: Data from the Triangle Completion Task.
    Xie Y; Bigelow RT; Frankenthaler SF; Studenski SA; Moffat SD; Agrawal Y
    Front Neurol; 2017; 8():173. PubMed ID: 28496432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye-Movements During Navigation in a Virtual Environment: Sex Differences and Relationship to Sex Hormones.
    Harris T; Hagg J; Pletzer B
    Front Neurosci; 2022; 16():755393. PubMed ID: 35573293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampus-dependent spatial learning is associated with higher global cognition among healthy older adults.
    Konishi K; Mckenzie S; Etchamendy N; Roy S; Bohbot VD
    Neuropsychologia; 2017 Nov; 106():310-321. PubMed ID: 28963056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance.
    Coutrot A; Schmidt S; Coutrot L; Pittman J; Hong L; Wiener JM; Hölscher C; Dalton RC; Hornberger M; Spiers HJ
    PLoS One; 2019; 14(3):e0213272. PubMed ID: 30883560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.