BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38073359)

  • 21. Self-Reported Sense of Direction and Vestibular Function in the Baltimore Longitudinal Study of Aging (BLSA).
    Gandhi P; Biju K; Klatt BN; Simonsick E; Agrawal Y
    J Assoc Res Otolaryngol; 2021 Apr; 22(2):207-214. PubMed ID: 33449237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced vestibular function is associated with longer, slower steps in healthy adults during normal speed walking.
    Anson E; Pineault K; Bair W; Studenski S; Agrawal Y
    Gait Posture; 2019 Feb; 68():340-345. PubMed ID: 30576978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vestibular cues improve landmark-based route navigation: A simulated driving study.
    Jabbari Y; Kenney DM; von Mohrenschildt M; Shedden JM
    Mem Cognit; 2021 Nov; 49(8):1633-1644. PubMed ID: 34018119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance in complex life situations: effects of age, cognition, and walking speed in virtual versus real life environments.
    Kafri M; Weiss PL; Zeilig G; Bondi M; Baum-Cohen I; Kizony R
    J Neuroeng Rehabil; 2021 Feb; 18(1):30. PubMed ID: 33557894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of galvanic vestibular stimulation on path trajectory during a path integration task.
    Karn T; Cinelli ME
    Q J Exp Psychol (Hove); 2019 Jun; 72(6):1550-1560. PubMed ID: 30131006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Virtual Navigation Toolbox: Providing tools for virtual navigation experiments.
    Müller MM; Scherer J; Unterbrink P; Bertrand OJN; Egelhaaf M; Boeddeker N
    PLoS One; 2023; 18(11):e0293536. PubMed ID: 37943845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual Morris water maze: opportunities and challenges.
    Thornberry C; Cimadevilla JM; Commins S
    Rev Neurosci; 2021 Dec; 32(8):887-903. PubMed ID: 33838098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effectiveness of virtual reality-based vestibular rehabilitation in patients with peripheral vestibular hypofunction.
    Başoğlu Y; Şerbetçioğlu MB; Çelik İ; Demirhan H
    Turk J Med Sci; 2022 Dec; 52(6):1970-1983. PubMed ID: 36945987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impaired navigation skills in patients with psychological distress and chronic peripheral vestibular hypofunction without vertigo.
    Guidetti G; Monzani D; Trebbi M; Rovatti V
    Acta Otorhinolaryngol Ital; 2008 Feb; 28(1):21-5. PubMed ID: 18533551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment.
    Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF
    Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vestibular perception and navigation in the congenitally blind.
    Seemungal BM; Glasauer S; Gresty MA; Bronstein AM
    J Neurophysiol; 2007 Jun; 97(6):4341-56. PubMed ID: 17392406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wayfinding and path integration deficits detected using a virtual reality mobile app in patients with traumatic brain injury.
    Seton C; Coutrot A; Hornberger M; Spiers HJ; Knight R; Whyatt C
    PLoS One; 2023; 18(3):e0282255. PubMed ID: 36893089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multisensory Interactions in Virtual Reality: Optic Flow Reduces Vestibular Sensitivity, but Only for Congruent Planes of Motion.
    Gallagher M; Choi R; Ferrè ER
    Multisens Res; 2020 Oct; 33(6):625-644. PubMed ID: 31972542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual reality in neurologic rehabilitation of spatial disorientation.
    Kober SE; Wood G; Hofer D; Kreuzig W; Kiefer M; Neuper C
    J Neuroeng Rehabil; 2013 Feb; 10():17. PubMed ID: 23394289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond Dizziness: Virtual Navigation, Spatial Anxiety and Hippocampal Volume in Bilateral Vestibulopathy.
    Kremmyda O; Hüfner K; Flanagin VL; Hamilton DA; Linn J; Strupp M; Jahn K; Brandt T
    Front Hum Neurosci; 2016; 10():139. PubMed ID: 27065838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using virtual environments to investigate wayfinding in 8- to 12-year-olds and adults.
    Lingwood J; Blades M; Farran EK; Courbois Y; Matthews D
    J Exp Child Psychol; 2018 Feb; 166():178-189. PubMed ID: 28941380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mirror in the sky: assessment of an augmented reality method for depicting navigational information.
    Reiner AJ; Hollands JG; Jamieson GA; Boustila S
    Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Spatial Disorientation in a Virtual Environment on Gait and Vital Features in Patients with Dementia: Pilot Single-Blind Randomized Control Trial.
    Amaefule CO; Lüdtke S; Kirste T; Teipel SJ
    JMIR Serious Games; 2020 Oct; 8(4):e18455. PubMed ID: 33030436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locomotor circumvention strategies in response to static pedestrians in a virtual and physical environment.
    Bühler MA; Lamontagne A
    Gait Posture; 2019 Feb; 68():201-206. PubMed ID: 30500732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.
    Meldrum D; Herdman S; Vance R; Murray D; Malone K; Duffy D; Glennon A; McConn-Walsh R
    Arch Phys Med Rehabil; 2015 Jul; 96(7):1319-1328.e1. PubMed ID: 25842051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.