These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38075230)
21. Novel head and neck cancer survival analysis approach: random survival forests versus Cox proportional hazards regression. Datema FR; Moya A; Krause P; Bäck T; Willmes L; Langeveld T; Baatenburg de Jong RJ; Blom HM Head Neck; 2012 Jan; 34(1):50-8. PubMed ID: 21322080 [TBL] [Abstract][Full Text] [Related]
22. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model. Kim Y; Kim KH; Park J; Yoon HI; Sung W Radiother Oncol; 2023 Jun; 183():109617. PubMed ID: 36921767 [TBL] [Abstract][Full Text] [Related]
23. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort. Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248 [TBL] [Abstract][Full Text] [Related]
24. Comparison of traditional model-based statistical methods with machine learning for the prediction of suicide behaviour. Grendas LN; Chiapella L; Rodante DE; Daray FM J Psychiatr Res; 2021 Nov; 145():85-91. PubMed ID: 34883411 [TBL] [Abstract][Full Text] [Related]
25. Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis. Dietrich S; Floegel A; Troll M; Kühn T; Rathmann W; Peters A; Sookthai D; von Bergen M; Kaaks R; Adamski J; Prehn C; Boeing H; Schulze MB; Illig T; Pischon T; Knüppel S; Wang-Sattler R; Drogan D Int J Epidemiol; 2016 Oct; 45(5):1406-1420. PubMed ID: 27591264 [TBL] [Abstract][Full Text] [Related]
26. Comparison of risk prediction models for the progression of pelvic inflammatory disease patients to sepsis: Cox regression model and machine learning model. Wang Q; Sun J; Liu X; Ping Y; Feng C; Liu F; Feng X Heliyon; 2024 Jan; 10(1):e23148. PubMed ID: 38163183 [TBL] [Abstract][Full Text] [Related]
27. MRI-based random survival Forest model improves prediction of progression-free survival to induction chemotherapy plus concurrent Chemoradiotherapy in Locoregionally Advanced nasopharyngeal carcinoma. Pei W; Wang C; Liao H; Chen X; Wei Y; Huang X; Liang X; Bao H; Su D; Jin G BMC Cancer; 2022 Jul; 22(1):739. PubMed ID: 35794590 [TBL] [Abstract][Full Text] [Related]
28. Development and validation of novel interpretable survival prediction models based on drug exposures for severe heart failure during vulnerable period. Guo Y; Yu F; Jiang FF; Yin SJ; Jiang MH; Li YJ; Yang HY; Chen LR; Cai WK; He GH J Transl Med; 2024 Aug; 22(1):743. PubMed ID: 39107765 [TBL] [Abstract][Full Text] [Related]
29. Using noninvasive anthropometric indices to develop and validate a predictive model for metabolic syndrome in Chinese adults: a nationwide study. Xu Q; Wang L; Ming J; Cao H; Liu T; Yu X; Bai Y; Liang S; Hu R; Wang L; Chen C; Zhou J; Ji Q BMC Endocr Disord; 2022 Mar; 22(1):53. PubMed ID: 35241044 [TBL] [Abstract][Full Text] [Related]
30. Machine learning-based prediction of 1-year mortality for acute coronary syndrome Hadanny A; Shouval R; Wu J; Gale CP; Unger R; Zahger D; Gottlieb S; Matetzky S; Goldenberg I; Beigel R; Iakobishvili Z J Cardiol; 2022 Mar; 79(3):342-351. PubMed ID: 34857429 [TBL] [Abstract][Full Text] [Related]
31. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. Pickett KL; Suresh K; Campbell KR; Davis S; Juarez-Colunga E BMC Med Res Methodol; 2021 Oct; 21(1):216. PubMed ID: 34657597 [TBL] [Abstract][Full Text] [Related]
32. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Hsich E; Gorodeski EZ; Blackstone EH; Ishwaran H; Lauer MS Circ Cardiovasc Qual Outcomes; 2011 Jan; 4(1):39-45. PubMed ID: 21098782 [TBL] [Abstract][Full Text] [Related]
33. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Zeng J; Li K; Cao F; Zheng Y Front Oncol; 2023; 13():1131859. PubMed ID: 36959782 [TBL] [Abstract][Full Text] [Related]
34. Development and validation of a random survival forest model for predicting long-term survival of early-stage young breast cancer patients based on the SEER database and an external validation cohort. Li LW; Liu X; Shen ML; Zhao MJ; Liu H Am J Cancer Res; 2024; 14(4):1609-1621. PubMed ID: 38726282 [TBL] [Abstract][Full Text] [Related]
35. Prediction of mortality in pneumonia patients with connective tissue disease treated with glucocorticoids or/and immunosuppressants by machine learning. Li D; Ding L; Luo J; Li QG Front Immunol; 2023; 14():1192369. PubMed ID: 37304293 [TBL] [Abstract][Full Text] [Related]
36. Machine Learning-Based Prognostic Model for Patients After Lung Transplantation. Tian D; Yan HJ; Huang H; Zuo YJ; Liu MZ; Zhao J; Wu B; Shi LZ; Chen JY JAMA Netw Open; 2023 May; 6(5):e2312022. PubMed ID: 37145595 [TBL] [Abstract][Full Text] [Related]
37. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy. Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ Front Oncol; 2020; 10():551420. PubMed ID: 33194609 [TBL] [Abstract][Full Text] [Related]
38. Prediction and Risk Stratification of Cardiovascular Disease in Diabetic Kidney Disease Patients. Ren J; Liu D; Li G; Duan J; Dong J; Liu Z Front Cardiovasc Med; 2022; 9():923549. PubMed ID: 35811691 [TBL] [Abstract][Full Text] [Related]
39. Comprehensive analysis of the interaction of antigen presentation during anti-tumour immunity and establishment of AIDPS systems in ovarian cancer. Sun W; Xu P; Gao K; Lian W; Sun X J Cell Mol Med; 2024 Apr; 28(8):e18309. PubMed ID: 38613345 [TBL] [Abstract][Full Text] [Related]
40. Risk Prediction of Dyslipidemia for Chinese Han Adults Using Random Forest Survival Model. Zhang X; Tang F; Ji J; Han W; Lu P Clin Epidemiol; 2019; 11():1047-1055. PubMed ID: 31849535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]