These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38075648)

  • 1. Thermally activated delayed fluorescence in a deep red dinuclear iridium(iii) complex: a hidden mechanism for short luminescence lifetimes.
    Pander P; Zaytsev AV; Sil A; Baryshnikov GV; Siddique F; Williams JAG; Dias FB; Kozhevnikov VN
    Chem Sci; 2023 Dec; 14(47):13934-13943. PubMed ID: 38075648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Stereogenic Dinuclear Ir(III) Complex with a Molecular Rack Design to Afford Efficient Thermally Enhanced Red Emission.
    Shafikov MZ; Martinscroft R; Hodgson C; Hayer A; Auch A; Kozhevnikov VN
    Inorg Chem; 2021 Feb; 60(3):1780-1789. PubMed ID: 33467858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exceptionally fast radiative decay of a dinuclear platinum complex through thermally activated delayed fluorescence.
    Pander P; Daniels R; Zaytsev AV; Horn A; Sil A; Penfold TJ; Williams JAG; Kozhevnikov VN; Dias FB
    Chem Sci; 2021 Mar; 12(17):6172-6180. PubMed ID: 33996015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TADF Material Design: Photophysical Background and Case Studies Focusing on Cu
    Yersin H; Czerwieniec R; Shafikov MZ; Suleymanova AF
    Chemphyschem; 2017 Dec; 18(24):3508-3535. PubMed ID: 29083512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dinuclear Cu(I) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin-Lattice Relaxation Effects of the Triplet State.
    Schinabeck A; Leitl MJ; Yersin H
    J Phys Chem Lett; 2018 Jun; 9(11):2848-2856. PubMed ID: 29750529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate.
    Liu J; Zhou K; Wang D; Deng C; Duan K; Ai Q; Zhang Q
    Front Chem; 2019; 7():312. PubMed ID: 31165054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono and dinuclear iridium(iii) complexes featuring bis-tridentate coordination and Schiff-base bridging ligands: the beneficial effect of a second metal ion on luminescence.
    Puttock EV; Sil A; Yufit DS; Williams JAG
    Dalton Trans; 2020 Aug; 49(30):10463-10476. PubMed ID: 32685958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight.
    Chen XK; Kim D; Brédas JL
    Acc Chem Res; 2018 Sep; 51(9):2215-2224. PubMed ID: 30141908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au⋅⋅⋅H-C Interactions Support a Robust Thermally Activated Delayed Fluorescence (TADF) Gold(I) Complex for OLEDs with Little Efficiency Roll-Off and Good Stability.
    Feng X; Yang JG; Miao J; Zhong C; Yin X; Li N; Wu C; Zhang Q; Chen Y; Li K; Yang C
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202209451. PubMed ID: 35932222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular design of efficient yellow- to red-emissive alkynylgold(iii) complexes for the realization of thermally activated delayed fluorescence (TADF) and their applications in solution-processed organic light-emitting devices.
    Au-Yeung CC; Li LK; Tang MC; Lai SL; Cheung WL; Ng M; Chan MY; Yam VW
    Chem Sci; 2021 Jul; 12(27):9516-9527. PubMed ID: 34349927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multi-Confinement and Phosphorescence Assisted Energy Transfer.
    Lou Q; Chen N; Zhu J; Liu K; Li C; Zhu Y; Xu W; Chen X; Song Z; Liang C; Shan CX; Hu J
    Adv Mater; 2023 May; 35(20):e2211858. PubMed ID: 36893767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters.
    Liu Y; Chen Y; Li H; Wang S; Wu X; Tong H; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30652-30658. PubMed ID: 32538076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetradentate C
    Kwok WK; Li LK; Lai SL; Leung MY; Tang WK; Cheng SC; Tang MC; Cheung WL; Ko CC; Chan MY; Yam VW
    J Am Chem Soc; 2023 May; 145(17):9584-9595. PubMed ID: 37073952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-Processed OLEDs Based on Thermally Activated Delayed Fluorescence Copper(I) Complexes with Intraligand Charge-Transfer Excited State.
    Teng T; Xiong J; Cheng G; Zhou C; Lv X; Li K
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine-Pyrimidine Structure.
    Serevičius T; Skaisgiris R; Dodonova J; Jagintavičius L; Banevičius D; Kazlauskas K; Tumkevičius S; Juršėnas S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10727-10736. PubMed ID: 32020805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes.
    Daniels RE; Culham S; Hunter M; Durrant MC; Probert MR; Clegg W; Williams JA; Kozhevnikov VN
    Dalton Trans; 2016 Apr; 45(16):6949-62. PubMed ID: 26983757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Thermally Activated Delayed Fluorescence in Dinuclear Ag(I) Complexes with a Bis-Bidentate Tetraphosphane Bridging Ligand.
    Chen J; Teng T; Kang L; Chen XL; Wu XY; Yu R; Lu CZ
    Inorg Chem; 2016 Oct; 55(19):9528-9536. PubMed ID: 27652823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-Processable Chiral Boron Complexes for Circularly Polarized Red Thermally Activated Delayed Fluorescent Devices.
    Xue P; Wang X; Wang W; Zhang J; Wang Z; Jin J; Zheng C; Li P; Xie G; Chen R
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47826-47834. PubMed ID: 34587742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic bis-cyclometallated iridium(III) phenanthroline complexes with pendant fluorenyl substituents: synthesis, redox, photophysical properties and light-emitting cells.
    Zeng X; Tavasli M; Perepichka IF; Batsanov AS; Bryce MR; Chiang CJ; Rothe C; Monkman AP
    Chemistry; 2008; 14(3):933-43. PubMed ID: 18033698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Tetradentate Gold(III)-TADF Emitters with Close to Unity Quantum Yield and Radiative Decay Rate Constant of up to 2 × 10
    Zhou D; Tong GSM; Cheng G; Tang YK; Liu W; Ma D; Du L; Chen JR; Che CM
    Adv Mater; 2022 Dec; 34(51):e2206598. PubMed ID: 36208071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.