These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38075855)

  • 1. Vineyard practices reduce the incidence of
    Testempasis SI; Papazlatani CV; Theocharis S; Karas PA; Koundouras S; Karpouzas DG; Karaoglanidis GS
    Front Microbiol; 2023; 14():1257644. PubMed ID: 38075855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are Epiphytic Microbial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera L.) Different between Conventional, Organic, and Biodynamic Grapes?
    Kecskeméti E; Berkelmann-Löhnertz B; Reineke A
    PLoS One; 2016; 11(8):e0160852. PubMed ID: 27500633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungi and mycotoxins in vineyards and grape products.
    Hocking AD; Leong SL; Kazi BA; Emmett RW; Scott ES
    Int J Food Microbiol; 2007 Oct; 119(1-2):84-8. PubMed ID: 17765989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California.
    Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD
    Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibberellin Application Improved Bunch Rot Control of Vignoles Grape, but Response to Mechanical Defoliation Varied Between Training Systems.
    Hed B; Centinari M
    Plant Dis; 2021 Feb; 105(2):339-345. PubMed ID: 32755368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the phenolic composition and yield of 'BRS Vitoria' seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS.
    Colombo RC; Roberto SR; Nixdorf SL; Pérez-Navarro J; Gómez-Alonso S; Mena-Morales A; García-Romero E; Azeredo Gonçalves LS; da Cruz MA; de Carvalho DU; Madeira TB; Watanabe LS; de Souza RT; Hermosín-Gutiérrez I
    Food Res Int; 2020 Apr; 130():108955. PubMed ID: 32156395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to
    Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R
    Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454
    [No Abstract]   [Full Text] [Related]  

  • 9. Managing ochratoxin A risk in the grape-wine food chain.
    Visconti A; Perrone G; Cozzi G; Solfrizzo M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Feb; 25(2):193-202. PubMed ID: 18286409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.
    Alabi OJ; Casassa LF; Gutha LR; Larsen RC; Henick-Kling T; Harbertson JF; Naidu RA
    PLoS One; 2016; 11(2):e0149666. PubMed ID: 26919614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of agronomic practices on grape aroma composition: a review.
    Alem H; Rigou P; Schneider R; Ojeda H; Torregrosa L
    J Sci Food Agric; 2019 Feb; 99(3):975-985. PubMed ID: 30142253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grape berry transpiration influences ripening and must composition in cv. Tempranillo (Vitis vinifera L.).
    Pascual I; Antolín MC; Goicoechea N; Irigoyen JJ; Morales F
    Physiol Plant; 2022 Jul; 174(4):e13741. PubMed ID: 35765704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.
    Steel CC; Blackman JW; Schmidtke LM
    J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Community Analyses Associated with Nine Varieties of Wine Grape Carposphere Based on High-Throughput Sequencing.
    Zhang S; Chen X; Zhong Q; Zhuang X; Bai Z
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31835425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz.
    Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K
    J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emerging contribution of social wasps to grape rot disease ecology.
    Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT
    PeerJ; 2017; 5():e3223. PubMed ID: 28462032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons.
    Cauduro Girardello R; Rich V; Smith RJ; Brenneman C; Heymann H; Oberholster A
    J Sci Food Agric; 2020 Mar; 100(4):1436-1447. PubMed ID: 31742703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes.
    Tanapichatsakul C; Khruengsai S; Pripdeevech P
    PLoS One; 2020; 15(11):e0242862. PubMed ID: 33232384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspergillus species producing ochratoxin A: isolation from vineyard soils and infection of Semillon bunches in Australia.
    Leong SL; Hocking AD; Scott ES
    J Appl Microbiol; 2007 Jan; 102(1):124-33. PubMed ID: 17184327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bark and Grape Microbiome of
    Vitulo N; Lemos WJF; Calgaro M; Confalone M; Felis GE; Zapparoli G; Nardi T
    Front Microbiol; 2018; 9():3203. PubMed ID: 30671035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.