These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3807631)

  • 41. RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen.
    Schuele G; Rumohr M; Huettmann G; Brinkmann R
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):714-9. PubMed ID: 15671304
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Treatment of pigmented hypertrophic scars with the 585 nm pulsed dye laser and the 532 nm frequency-doubled Nd:YAG laser in the Q-switched and variable pulse modes: a comparative study.
    Bowes LE; Nouri K; Berman B; Jimenez G; Pardo R; Rodriguez L; Spencer JM
    Dermatol Surg; 2002 Aug; 28(8):714-9. PubMed ID: 12174064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generation of pulses with sub-nanosecond duration and sub-joule energy in gain-switched Ti: Sapphire lasers.
    Tarasov A; Chu H
    Opt Express; 2019 Feb; 27(3):3574-3582. PubMed ID: 30732374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration.
    Woo WK; Jasim ZF; Handley JM
    Dermatol Surg; 2003 Dec; 29(12):1176-80; discussion 1180. PubMed ID: 14725658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser.
    McDaniel DH; Ash K; Lord J; Newman J; Adrian RM; Zukowski M
    Dermatol Surg; 1999 Jan; 25(1):52-8. PubMed ID: 9935096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combination 532-nm and 1064-nm lasers for noninvasive skin rejuvenation and toning.
    Lee MW
    Arch Dermatol; 2003 Oct; 139(10):1265-76. PubMed ID: 14568830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thresholds for visible lesions in the primate eye produced by ultrashort near-infrared laser pulses.
    Cain CP; Toth CA; Noojin GD; Carothers V; Stolarski DJ; Rockwell BA
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2343-9. PubMed ID: 10476801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hyper-Rayleigh scattering with picosecond pulse trains.
    Franzen PL; Misoguti L; Zilio SC
    Appl Opt; 2008 Apr; 47(10):1443-6. PubMed ID: 18382570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF oscillator/regenerative amplifier laser.
    Niemz MH; Klancnik EG; Bille JF
    Lasers Surg Med; 1991; 11(5):426-31. PubMed ID: 1816477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visible lesion thresholds with pulse duration, spot size dependency, and model predictions for 1.54-microm, near-infrared laser pulses penetrating porcine skin.
    Cain CP; Schuster KJ; Zohner JJ; Stockton KL; Stolarski DJ; Thomas RJ; Rockwell BA; Roach WP
    J Biomed Opt; 2006; 11(2):024001. PubMed ID: 16674191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intraocular pressure and the corneal endothelium after neodymium-YAG laser posterior capsulotomy. Relative effects of aphakia and pseudophakia.
    Kraff MC; Sanders DR; Lieberman HL
    Arch Ophthalmol; 1985 Apr; 103(4):511-4. PubMed ID: 3985828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Picosecond optical breakdown: tissue effects and reduction of collateral damage.
    Zysset B; Fujimoto JG; Puliafito CA; Birngruber R; Deutsch TF
    Lasers Surg Med; 1989; 9(3):193-204. PubMed ID: 2659910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intraocular lens damage from the neodymium-YAG laser.
    Clayman HM; Karrenberg FG; Parel JM
    Ann Ophthalmol; 1984 Jun; 16(6):551-3, 556. PubMed ID: 6742696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spontaneous enlargement of neodymium:YAG posterior capsulotomy in aphakic and pseudophakic patients.
    Clayman HM; Jaffe NS
    J Cataract Refract Surg; 1988 Nov; 14(6):667-9. PubMed ID: 3230524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The use of the 300 microsecond 1064 nm Nd:YAG laser in the treatment of keloids.
    Rossi A; Lu R; Frey MK; Kubota T; Smith LA; Perez M
    J Drugs Dermatol; 2013 Nov; 12(11):1256-62. PubMed ID: 24196333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.
    Radmanesh M; Rafiei Z
    J Cosmet Laser Ther; 2015 Apr; 17(2):65-8. PubMed ID: 25411720
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New applications of the neodymium: yttrium aluminum garnet laser in the Q-switched mode: experimental results.
    Balacco-Gabrieli C; Castellano L; Palmisano C; Picardo V
    Ann Ophthalmol; 1992 Jun; 24(6):216-9. PubMed ID: 1444082
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A pilot study on the treatment of facial rhytids using nonablative 585-nm pulsed dye and 532-nm Nd:YAG lasers.
    Woo WK; Handley JM
    Dermatol Surg; 2003 Dec; 29(12):1192-5; discussion 1195. PubMed ID: 14725661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The experimental study of Nd: YAG laser injuring effects on intraocular lenses made by different materials].
    Wang Y; Zhang J; Zhang Y
    Zhonghua Yan Ke Za Zhi; 1998 Mar; 34(2):103-5, 6. PubMed ID: 11877166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.