BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38076439)

  • 1. Deep learning
    Gubbi MR; Assis F; Chrispin J; Bell MAL
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11505. PubMed ID: 38076439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Demonstration of Photoacoustic Image Guidance and Robotic Visual Servoing for Cardiac Catheter-Based Interventions.
    Graham M; Assis F; Allman D; Wiacek A; Gonzalez E; Gubbi M; Dong J; Hou H; Beck S; Chrispin J; Bell MAL
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1015-1029. PubMed ID: 31502964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning.
    Allman D; Reiter A; Bell MAL
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1464-1477. PubMed ID: 29870374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA; Bell MAL
    J Biomed Opt; 2020 Jul; 25(7):1-19. PubMed ID: 32713168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible array transducer for photoacoustic-guided interventions: phantom and
    Zhang J; Wiacek A; Feng Z; Ding K; Lediju Bell MA
    Biomed Opt Express; 2023 Aug; 14(8):4349-4368. PubMed ID: 37799699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic multi-catheter detection using deeply supervised convolutional neural network in MRI-guided HDR prostate brachytherapy.
    Dai X; Lei Y; Zhang Y; Qiu RLJ; Wang T; Dresser SA; Curran WJ; Patel P; Liu T; Yang X
    Med Phys; 2020 Sep; 47(9):4115-4124. PubMed ID: 32484573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The challenges facing deep learning-based catheter localization for ultrasound guided high-dose-rate prostate brachytherapy.
    Liu D; Tupor S; Singh J; Chernoff T; Leong N; Sadikov E; Amjad A; Zilles S
    Med Phys; 2022 Apr; 49(4):2442-2451. PubMed ID: 35118676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Deep Learning Network for Mitigating Limited-view and Under-sampling Artifacts in Ring-shaped Photoacoustic Tomography.
    Zhang H; Li H; Nyayapathi N; Wang D; Le A; Ying L; Xia J
    Comput Med Imaging Graph; 2020 Sep; 84():101720. PubMed ID: 32679469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive machine learning method for photoacoustic computed tomography based on sparse array sensor data.
    Wang R; Zhu J; Meng Y; Wang X; Chen R; Wang K; Li C; Shi J
    Comput Methods Programs Biomed; 2023 Dec; 242():107822. PubMed ID: 37832425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Framework to Predict Generalized Contrast-to-Noise Ratios of Photoacoustic Images With Applications to Computer Vision.
    Gubbi MR; Gonzalez EA; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):2098-2114. PubMed ID: 35446763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoacoustic-based visual servoing of a needle tip.
    Lediju Bell MA; Shubert J
    Sci Rep; 2018 Oct; 8(1):15519. PubMed ID: 30341371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of interventional photoacoustic imaging (iPAI) capabilities in biological tissues.
    Bhagavatula SK; Li L; Tearney GJ
    Med Phys; 2021 Feb; 48(2):770-780. PubMed ID: 33264419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A learning-based, region of interest-tracking algorithm for catheter detection in echocardiography.
    Kim T; Hedayat M; Vaitkus VV; Belohlavek M; Krishnamurthy V; Borazjani I
    Comput Med Imaging Graph; 2022 Sep; 100():102106. PubMed ID: 35970125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoacoustic-based catheter tracking: simulation, phantom, and
    Cheng A; Kim Y; Itsarachaiyot Y; Zhang HK; Weiss CR; Taylor RH; Boctor EM
    J Med Imaging (Bellingham); 2018 Apr; 5(2):021223. PubMed ID: 29594184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Photoacoustic Imaging of Vascular Network Through Thick Porous Media.
    Gao Y; Xu W; Chen Y; Xie W; Cheng Q
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2191-2204. PubMed ID: 35294347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging.
    Farnia P; Mohammadi M; Najafzadeh E; Alimohamadi M; Makkiabadi B; Ahmadian A
    Biomed Phys Eng Express; 2020 Jun; 6(4):045019. PubMed ID: 33444279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle.
    Singh MK; Parameshwarappa V; Hendriksen E; Steenbergen W; Manohar S
    J Biomed Opt; 2016 Dec; 21(12):120501. PubMed ID: 27924348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human colorectal cancer tissue assessment using optical coherence tomography catheter and deep learning.
    Luo H; Li S; Zeng Y; Cheema H; Otegbeye E; Ahmed S; Chapman WC; Mutch M; Zhou C; Zhu Q
    J Biophotonics; 2022 Jun; 15(6):e202100349. PubMed ID: 35150067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium.
    Johnstonbaugh K; Agrawal S; Durairaj DA; Fadden C; Dangi A; Karri SPK; Kothapalli SR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2649-2659. PubMed ID: 31944951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.