These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 38076450)

  • 1. Coherent Raman scattering microscopy of lipid droplets in cells and tissues.
    Zhang C
    J Raman Spectrosc; 2023 Sep; 54(9):988-1000. PubMed ID: 38076450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting lipid droplet biology with coherent Raman scattering microscopy.
    Chen T; Yavuz A; Wang MC
    J Cell Sci; 2022 Mar; 135(5):. PubMed ID: 33975358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Signatures of Lipid Droplets as New Markers to Quantify Cellular Metabolic Changes.
    Zhang C; Boppart SA
    Anal Chem; 2020 Dec; 92(24):15943-15952. PubMed ID: 33232121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy.
    Rinia HA; Burger KN; Bonn M; Müller M
    Biophys J; 2008 Nov; 95(10):4908-14. PubMed ID: 18689461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy.
    Nan X; Cheng JX; Xie XS
    J Lipid Res; 2003 Nov; 44(11):2202-8. PubMed ID: 12923234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent Raman Scattering Microscopy in Biology and Medicine.
    Zhang C; Zhang D; Cheng JX
    Annu Rev Biomed Eng; 2015; 17():415-45. PubMed ID: 26514285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging.
    Zhang C; Li J; Lan L; Cheng JX
    Anal Chem; 2017 Apr; 89(8):4502-4507. PubMed ID: 28345862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the accuracy of brain tumor surgery via Raman-based technology.
    Hollon T; Lewis S; Freudiger CW; Sunney Xie X; Orringer DA
    Neurosurg Focus; 2016 Mar; 40(3):E9. PubMed ID: 26926067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies.
    Majzner K; Chlopicki S; Baranska M
    J Biophotonics; 2016 Apr; 9(4):396-405. PubMed ID: 25966299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy.
    Billecke N; Rago G; Bosma M; Eijkel G; Gemmink A; Leproux P; Huss G; Schrauwen P; Hesselink MK; Bonn M; Parekh SH
    Histochem Cell Biol; 2014 Mar; 141(3):263-73. PubMed ID: 24186059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DO-SRS imaging of metabolic dynamics in aging
    Li Y; Zhang W; Fung AA; Shi L
    Analyst; 2021 Dec; 146(24):7510-7519. PubMed ID: 34781326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent Raman scattering microscopy: capable solution in search of a larger audience.
    Prince RC; Potma EO
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34085436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free CARS microscopy reveals similar triacylglycerol acyl chain length and saturation in myocellular lipid droplets of athletes and individuals with type 2 diabetes.
    Daemen S; Gemmink A; Paul A; Billecke N; Rieger K; Parekh SH; Hesselink MKC
    Diabetologia; 2020 Dec; 63(12):2654-2664. PubMed ID: 32880685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy.
    Liao CS; Cheng JX
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):69-93. PubMed ID: 27306307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for Lipid Droplet Biophysical Characterization in
    Martins AS; Martins IC; Santos NC
    Front Microbiol; 2018; 9():1951. PubMed ID: 30186265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodeling of lipid droplets during lipolysis and growth in adipocytes.
    Paar M; Jüngst C; Steiner NA; Magnes C; Sinner F; Kolb D; Lass A; Zimmermann R; Zumbusch A; Kohlwein SD; Wolinski H
    J Biol Chem; 2012 Mar; 287(14):11164-73. PubMed ID: 22311986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of coherent Raman scattering microscopies to clinical and biological studies.
    Schie IW; Krafft C; Popp J
    Analyst; 2015 Jun; 140(12):3897-909. PubMed ID: 25811305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid droplets exhaustion with caspases activation in HeLa cells cultured in plasma-activated medium observed by multiplex coherent anti-Stokes Raman scattering microscopy.
    Furuta R; Kurake N; Takeda K; Ishikawa K; Ohta T; Ito M; Hashizume H; Tanaka H; Kondo H; Sekine M; Hori M
    Biointerphases; 2017 Aug; 12(3):031006. PubMed ID: 28768419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of chemical composition of lipid droplets in endothelial inflammation and apoptosis.
    Pacia MZ; Sternak M; Mateuszuk L; Stojak M; Kaczor A; Chlopicki S
    Biochim Biophys Acta Mol Cell Res; 2020 Jun; 1867(6):118681. PubMed ID: 32084444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.