These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38076796)

  • 1. Vaxign-DL: A Deep Learning-based Method for Vaccine Design and its Evaluation.
    Zhang Y; Huffman A; Johnson J; He Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Vaxign-DL for Vaccine Candidate Prediction with added ESM-Generated Features.
    Chen Y; Zhang Y; He Y
    bioRxiv; 2024 Sep; ():. PubMed ID: 39282385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens.
    Ong E; Wang H; Wong MU; Seetharaman M; Valdez N; He Y
    Bioinformatics; 2020 May; 36(10):3185-3191. PubMed ID: 32096826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccine Design by Reverse Vaccinology and Machine Learning.
    Ong E; He Y
    Methods Mol Biol; 2022; 2414():1-16. PubMed ID: 34784028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaxi-DL: A web-based deep learning server to identify potential vaccine candidates.
    Rawal K; Sinha R; Nath SK; Preeti P; Kumari P; Gupta S; Sharma T; Strych U; Hotez P; Bottazzi ME
    Comput Biol Med; 2022 Jun; 145():105401. PubMed ID: 35381451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaxign2: the second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning.
    Ong E; Cooke MF; Huffman A; Xiang Z; Wong MU; Wang H; Seetharaman M; Valdez N; He Y
    Nucleic Acids Res; 2021 Jul; 49(W1):W671-W678. PubMed ID: 34009334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology.
    Xiang Z; He Y
    BMC Bioinformatics; 2013; 14 Suppl 4(Suppl 4):S2. PubMed ID: 23514126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development.
    He Y; Xiang Z; Mobley HL
    J Biomed Biotechnol; 2010; 2010():297505. PubMed ID: 20671958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Open-Source Reverse Vaccinology Programs for Bacterial Vaccine Antigen Discovery.
    Dalsass M; Brozzi A; Medini D; Rappuoli R
    Front Immunol; 2019; 10():113. PubMed ID: 30837982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions.
    Jaiswal V; Chanumolu SK; Gupta A; Chauhan RS; Rout C
    BMC Bioinformatics; 2013 Jul; 14():211. PubMed ID: 23815072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vaxi-DL: An Artificial Intelligence-Enabled Platform for Vaccine Development.
    Preeti P; Nath SK; Arambam N; Sharma T; Choudhury PR; Choudhury A; Khanna V; Strych U; Hotez PJ; Bottazzi ME; Rawal K
    Methods Mol Biol; 2023; 2673():305-316. PubMed ID: 37258923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MCDM approach for Reverse vaccinology model to predict bacterial protective antigens.
    Angaitkar P; Ram Janghel R; Prasad Sahu T
    Vaccine; 2024 Jul; 42(18):3874-3882. PubMed ID: 38704249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic Resistance Determinant-Focused Acinetobacter baumannii Vaccine Designed Using Reverse Vaccinology.
    Ni Z; Chen Y; Ong E; He Y
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28230771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReVac: a reverse vaccinology computational pipeline for prioritization of prokaryotic protein vaccine candidates.
    D'Mello A; Ahearn CP; Murphy TF; Tettelin H
    BMC Genomics; 2019 Dec; 20(1):981. PubMed ID: 31842745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning and conventional radiomics to predict
    Zhang H; Fan X; Zhang J; Wei Z; Feng W; Hu Y; Ni J; Yao F; Zhou G; Wan C; Zhang X; Wang J; Liu Y; You Y; Yu Y
    Front Oncol; 2023; 13():1143688. PubMed ID: 37711207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.
    Xie R; Li J; Wang J; Dai W; Leier A; Marquez-Lago TT; Akutsu T; Lithgow T; Song J; Zhang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32599617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Antigenic Properties of Acinetobacter baumannii Proteins as Novel Putative Vaccine Candidates Using Reverse Vaccinology Approach.
    Piri-Gharaghie T; Doosti A; Mirzaei SA
    Appl Biochem Biotechnol; 2022 Oct; 194(10):4892-4914. PubMed ID: 35670904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics.
    Keek SA; Beuque M; Primakov S; Woodruff HC; Chatterjee A; van Timmeren JE; Vallières M; Hendriks LEL; Kraft J; Andratschke N; Braunstein SE; Morin O; Lambin P
    Front Oncol; 2022; 12():920393. PubMed ID: 35912214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology.
    Heinson AI; Gunawardana Y; Moesker B; Hume CC; Vataga E; Hall Y; Stylianou E; McShane H; Williams A; Niranjan M; Woelk CH
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28157153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.