These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38077000)

  • 1. MHC-Fine: Fine-tuned AlphaFold for Precise MHC-Peptide Complex Prediction.
    Glukhov E; Kalitin D; Stepanenko D; Zhu Y; Nguyen T; Jones G; Simmerling C; Mitchell JC; Vajda S; Dill KA; Padhorny D; Kozakov D
    bioRxiv; 2023 Dec; ():. PubMed ID: 38077000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MHC-Fine: Fine-tuned AlphaFold for precise MHC-peptide complex prediction.
    Glukhov E; Kalitin D; Stepanenko D; Zhu Y; Nguyen T; Jones G; Patsahan T; Simmerling C; Mitchell JC; Vajda S; Dill KA; Padhorny D; Kozakov D
    Biophys J; 2024 Sep; 123(17):2902-2909. PubMed ID: 38751115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of AlphaFold antibody-antigen modeling with implications for improving predictive accuracy.
    Yin R; Pierce BG
    Protein Sci; 2024 Jan; 33(1):e4865. PubMed ID: 38073135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PANDORA: A Fast, Anchor-Restrained Modelling Protocol for Peptide: MHC Complexes.
    Marzella DF; Parizi FM; van Tilborg D; Renaud N; Sybrandi D; Buzatu R; Rademaker DT; 't Hoen PAC; Xue LC
    Front Immunol; 2022; 13():878762. PubMed ID: 35619705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate modeling of peptide-MHC structures with AlphaFold.
    Mikhaylov V; Levine AJ
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate modeling of peptide-MHC structures with AlphaFold.
    Mikhaylov V; Brambley CA; Keller GLJ; Arbuiso AG; Weiss LI; Baker BM; Levine AJ
    Structure; 2024 Feb; 32(2):228-241.e4. PubMed ID: 38113889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PANDORA v2.0: Benchmarking peptide-MHC II models and software improvements.
    Parizi FM; Marzella DF; Ramakrishnan G; 't Hoen PAC; Karimi-Jafari MH; Xue LC
    Front Immunol; 2023; 14():1285899. PubMed ID: 38143769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-binding specificity prediction using fine-tuned protein structure prediction networks.
    Motmaen A; Dauparas J; Baek M; Abedi MH; Baker D; Bradley P
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2216697120. PubMed ID: 36802421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of AlphaFold Antibody-Antigen Modeling with Implications for Improving Predictive Accuracy.
    Yin R; Pierce BG
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based prediction of T cell receptor:peptide-MHC interactions.
    Bradley P
    Elife; 2023 Jan; 12():. PubMed ID: 36661395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors.
    Lee C; Su BH; Tseng YJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling.
    Johansson-Ă…khe I; Wallner B
    Front Bioinform; 2022; 2():959160. PubMed ID: 36304330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can AlphaFold's breakthrough in protein structure help decode the fundamental principles of adaptive cellular immunity?
    McMaster B; Thorpe C; Ogg G; Deane CM; Koohy H
    Nat Methods; 2024 May; 21(5):766-776. PubMed ID: 38654083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The PANDORA Software for Anchor-Restrained Peptide:MHC Modeling.
    Marzella DF; Crocioni G; Parizi FM; Xue LC
    Methods Mol Biol; 2023; 2673():251-271. PubMed ID: 37258920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental structures of antibody/MHC-I complexes reveal details of epitopes overlooked by computational prediction.
    Boyd LF; Jiang J; Ahmad J; Natarajan K; Margulies DH
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data.
    Garde C; Ramarathinam SH; Jappe EC; Nielsen M; Kringelum JV; Trolle T; Purcell AW
    Immunogenetics; 2019 Jul; 71(7):445-454. PubMed ID: 31183519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences.
    Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Structures of Antibody/MHC-I Complexes Reveal Details of Epitopes Overlooked by Computational Prediction.
    Boyd LF; Jiang J; Ahmad J; Natarajan K; Margulies DH
    J Immunol; 2024 Apr; 212(8):1366-1380. PubMed ID: 38456672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.