These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38077216)

  • 1. A novel approach to seabird posture estimation: finding roll and yaw angles of dynamic soaring albatrosses using tri-axial magnetometers.
    Schoombie S; Wilson RP; Ryan PG
    R Soc Open Sci; 2023 Dec; 10(12):231363. PubMed ID: 38077216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of animal movement patterns using tri-axial magnetometry.
    Williams HJ; Holton MD; Shepard ELC; Largey N; Norman B; Ryan PG; Duriez O; Scantlebury M; Quintana F; Magowan EA; Marks NJ; Alagaili AN; Bennett NC; Wilson RP
    Mov Ecol; 2017; 5():6. PubMed ID: 28357113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL; Wakefield ED; Phillips RA
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Markov models identify major movement modes in accelerometer and magnetometer data from four albatross species.
    Conners MG; Michelot T; Heywood EI; Orben RA; Phillips RA; Vyssotski AL; Shaffer SA; Thorne LH
    Mov Ecol; 2021 Feb; 9(1):7. PubMed ID: 33618773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea.
    Kempton JA; Wynn J; Bond S; Evry J; Fayet AL; Gillies N; Guilford T; Kavelaars M; Juarez-Martinez I; Padget O; Rutz C; Shoji A; Syposz M; Taylor GK
    Sci Adv; 2022 Jun; 8(22):eabo0200. PubMed ID: 35648862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of dynamic soaring in albatrosses.
    Sachs G; Traugott J; Nesterova AP; Bonadonna F
    J Exp Biol; 2013 Nov; 216(Pt 22):4222-32. PubMed ID: 24172888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel hypothesis for how albatrosses optimize their flight physics in real-time: an extremum seeking model and control for dynamic soaring.
    Pokhrel S; Eisa SA
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36594630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis.
    Gunner RM; Wilson RP; Holton MD; Scott R; Hopkins P; Duarte CM
    Ecol Evol; 2020 Jul; 10(14):7872-7886. PubMed ID: 32760571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dead-reckoning elucidates fine-scale habitat use by European badgers
    Magowan EA; Maguire IE; Smith S; Redpath S; Marks NJ; Wilson RP; Menzies F; O'Hagan M; Scantlebury DM
    Anim Biotelemetry; 2022; 10(1):10. PubMed ID: 37521810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioural compass: animal behaviour recognition using magnetometers.
    Chakravarty P; Maalberg M; Cozzi G; Ozgul A; Aminian K
    Mov Ecol; 2019; 7():28. PubMed ID: 31485331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs.
    Sato K; Sakamoto KQ; Watanuki Y; Takahashi A; Katsumata N; Bost CA; Weimerskirch H
    PLoS One; 2009; 4(4):e5400. PubMed ID: 19401767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.
    Yonehara Y; Goto Y; Yoda K; Watanuki Y; Young LC; Weimerskirch H; Bost CA; Sato K
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9039-44. PubMed ID: 27457932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait and posture discrimination in sheep using a tri-axial accelerometer.
    Radeski M; Ilieski V
    Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird.
    Clay TA; Joo R; Weimerskirch H; Phillips RA; den Ouden O; Basille M; Clusella-Trullas S; Assink JD; Patrick SC
    J Anim Ecol; 2020 Aug; 89(8):1811-1823. PubMed ID: 32557603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On higher ground: how well can dynamic body acceleration determine speed in variable terrain?
    Bidder OR; Qasem LA; Wilson RP
    PLoS One; 2012; 7(11):e50556. PubMed ID: 23226313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
    Liu DN; Hou ZX; Guo Z; Yang XX; Gao XZ
    Bioinspir Biomim; 2017 Jan; 12(1):016014. PubMed ID: 27991431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal dynamic soaring consists of successive shallow arcs.
    Bousquet GD; Triantafyllou MS; Slotine JE
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of harness design for tag attachment on the flight performance of five soaring species.
    Longarini A; Duriez O; Shepard E; Safi K; Wikelski M; Scacco M
    Mov Ecol; 2023 Jul; 11(1):39. PubMed ID: 37415232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wandering albatrosses exert high take-off effort only when both wind and waves are gentle.
    Uesaka L; Goto Y; Naruoka M; Weimerskirch H; Sato K; Sakamoto KQ
    Elife; 2023 Oct; 12():. PubMed ID: 37814539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.