These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38077453)

  • 1. Enhancing skill learning with dual-user haptic feedback: insights from a task-specific approach.
    Zhang Y; Wang O; Wang Y; Tavakoli M; Zheng B
    Front Robot AI; 2023; 10():1286282. PubMed ID: 38077453
    [No Abstract]   [Full Text] [Related]  

  • 2. Periodic Kinesthetic Guidance Cannot Expedite Learning Surgical Skills.
    Lu F; Wang B; Sanchez P; Kathrada AI; Tavakoli M; Zheng B
    Surg Innov; 2021 Feb; 28(1):103-109. PubMed ID: 33085581
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expert laparoscopist performance on virtual reality simulation tasks with and without haptic features.
    Siu M; Debbink K; Duda A; Orthopoulos G; Romanelli J; Wu J; Seymour NE
    Surg Endosc; 2023 Nov; 37(11):8748-8754. PubMed ID: 37563347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Review of Virtual Haptics in Surgical Simulation: A Valid Educational Tool?
    Rangarajan K; Davis H; Pucher PH
    J Surg Educ; 2020; 77(2):337-347. PubMed ID: 31564519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of haptic feedback in laparoscopic surgery skill acquisition.
    Zhou M; Tse S; Derevianko A; Jones DB; Schwaitzberg SD; Cao CG
    Surg Endosc; 2012 Apr; 26(4):1128-34. PubMed ID: 22044975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of haptic feedback in laparoscopic training using the LapMentor II.
    Salkini MW; Doarn CR; Kiehl N; Broderick TJ; Donovan JF; Gaitonde K
    J Endourol; 2010 Jan; 24(1):99-102. PubMed ID: 20059385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic Training: Which Types Facilitate (re)Learning of Which Motor Task and for Whom? Answers by a Review.
    Basalp E; Wolf P; Marchal-Crespo L
    IEEE Trans Haptics; 2021; 14(4):722-739. PubMed ID: 34388095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual preferences for visually- and haptically-guided grasping.
    Stone KD; Gonzalez CL
    Acta Psychol (Amst); 2015 Sep; 160():1-10. PubMed ID: 26134414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective differentiation of force-based laparoscopic skills using a novel haptic simulator.
    Singapogu RB; Smith DE; Long LO; Burg TC; Pagano CC; Burg KJ
    J Surg Educ; 2012; 69(6):766-73. PubMed ID: 23111044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.
    Hagelsteen K; Langegård A; Lantz A; Ekelund M; Anderberg M; Bergenfelz A
    Minim Invasive Ther Allied Technol; 2017 Oct; 26(5):269-277. PubMed ID: 28367667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Continuous Motion Parameter Feedback on Laparoscopic Simulation Training: A Prospective Randomized Controlled Trial on Skill Acquisition and Retention.
    Buescher JF; Mehdorn AS; Neumann PA; Becker F; Eichelmann AK; Pankratius U; Bahde R; Foell D; Senninger N; Rijcken E
    J Surg Educ; 2018; 75(2):516-526. PubMed ID: 28864265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pantomime-grasping: the 'return' of haptic feedback supports the absolute specification of object size.
    Davarpanah Jazi S; Yau M; Westwood DA; Heath M
    Exp Brain Res; 2015 Jul; 233(7):2029-40. PubMed ID: 25869741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early exposure to haptic feedback enhances performance in surgical simulator training: a prospective randomized crossover study in surgical residents.
    Ström P; Hedman L; Särnå L; Kjellin A; Wredmark T; Felländer-Tsai L
    Surg Endosc; 2006 Sep; 20(9):1383-8. PubMed ID: 16823652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic Feedback, Force Feedback, and Force-Sensing in Simulation Training for Laparoscopy: A Systematic Overview.
    Overtoom EM; Horeman T; Jansen FW; Dankelman J; Schreuder HWR
    J Surg Educ; 2019; 76(1):242-261. PubMed ID: 30082239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.