These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38077457)

  • 61. Exploring the existence of better hands for manipulation than the human hand based on hand proportions.
    Hu D; Xiong CH; Liu MJ
    J Theor Biol; 2018 Mar; 440():100-111. PubMed ID: 29287994
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hand-Object Interaction: From Human Demonstrations to Robot Manipulation.
    Carfì A; Patten T; Kuang Y; Hammoud A; Alameh M; Maiettini E; Weinberg AI; Faria D; Mastrogiovanni F; Alenyà G; Natale L; Perdereau V; Vincze M; Billard A
    Front Robot AI; 2021; 8():714023. PubMed ID: 34660702
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wearable Robotic Glove Design Using Surface-Mounted Actuators.
    Park J; Hwang I; Lee W
    Front Bioeng Biotechnol; 2020; 8():548947. PubMed ID: 33102453
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Learning Haptic-Based Object Pose Estimation for In-Hand Manipulation Control With Underactuated Robotic Hands.
    Azulay O; Ben-David I; Sintov A
    IEEE Trans Haptics; 2022 Dec; PP():. PubMed ID: 37015658
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dexterous magnetic manipulation of conductive non-magnetic objects.
    Pham LN; Tabor GF; Pourkand A; Aman JLB; Hermans T; Abbott JJ
    Nature; 2021 Oct; 598(7881):439-443. PubMed ID: 34671137
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Orientation control strategies and adaptation to a visuomotor perturbation in rotational hand movements.
    Zruya O; Nisky I
    PLoS Comput Biol; 2022 Dec; 18(12):e1010248. PubMed ID: 36469555
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adaptive Variable Stiffness Particle Phalange for Robust and Durable Robotic Grasping.
    Zhou J; Chen Y; Hu Y; Wang Z; Li Y; Gu G; Liu Y
    Soft Robot; 2020 Dec; 7(6):743-757. PubMed ID: 32319857
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Learning a Contact Potential Field for Modeling the Hand-Object Interaction.
    Yang L; Zhan X; Li K; Xu W; Zhang J; Li J; Lu C
    IEEE Trans Pattern Anal Mach Intell; 2024 Aug; 46(8):5645-5662. PubMed ID: 38517729
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Towards Understanding Complex Human Dexterous Manipulation Strategies: Kinematics of Gaiting-based Object Rotations.
    Hong J; Dollar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4024-4029. PubMed ID: 33018882
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Gradual molding of the hand to object contours.
    Santello M; Soechting JF
    J Neurophysiol; 1998 Mar; 79(3):1307-20. PubMed ID: 9497412
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multichannel Sensorimotor Integration with a Dexterous Artificial Hand.
    Abd MA; Engeberg ED
    Res Sq; 2023 Mar; ():. PubMed ID: 36993376
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Design of a Wearable Haptic Device for Hand Palm Cutaneous Feedback.
    Dragusanu M; Villani A; Prattichizzo D; Malvezzi M
    Front Robot AI; 2021; 8():706627. PubMed ID: 34557524
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation.
    Costanzo M; De Maria G; Natale C; Pirozzi S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823548
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sensorimotor memory of weight asymmetry in object manipulation.
    Bursztyn LL; Flanagan JR
    Exp Brain Res; 2008 Jan; 184(1):127-33. PubMed ID: 17957361
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Real time control and fabrication of a soft robotic glove by two parallel sensors with MBD approach.
    Rakhtala SM; Ghayebi R
    Med Eng Phys; 2022 Feb; 100():103743. PubMed ID: 35144730
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Human control of complex objects: Towards more dexterous robots.
    Bazzi S; Sternad D
    Adv Robot; 2020; 34(17):1137-1155. PubMed ID: 33100448
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterizing Continuous Manipulation Families for Dexterous Soft Robot Hands.
    Sun J; King JP; Pollard NS
    Front Robot AI; 2021; 8():645290. PubMed ID: 33928130
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dexterous manipulation is poorer at older ages and is dissociated from decline of hand strength.
    Dayanidhi S; Valero-Cuevas FJ
    J Gerontol A Biol Sci Med Sci; 2014 Sep; 69(9):1139-45. PubMed ID: 24610868
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers.
    Weiner P; Neef C; Shibata Y; Nakamura Y; Asfour T
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878001
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of aging on conditional visuomotor learning for grasping and lifting eccentrically weighted objects.
    Rao N; Mehta N; Patel P; Parikh PJ
    J Appl Physiol (1985); 2021 Sep; 131(3):937-948. PubMed ID: 34264127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.