These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38077466)

  • 21. Portable Electronic Nose Based on Digital and Analog Chemical Sensors for 2,4,6-Trichloroanisole Discrimination.
    Meléndez F; Arroyo P; Gómez-Suárez J; Palomeque-Mangut S; Suárez JI; Lozano J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloroanisoles and Other Chlorinated Compounds in Cork from Different Geographical Areas.
    Salvatella P; Prat C; Roselló J; Anticó E
    Toxics; 2019 Sep; 7(4):. PubMed ID: 31546986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple solid-phase microextraction in a non-equilibrium situation. Application in quantitative analysis of chlorophenols and chloroanisoles related to cork taint in wine.
    Martínez-Uruñuela A; González-Sáiz JM; Pizarro C
    J Chromatogr A; 2005 Sep; 1089(1-2):31-8. PubMed ID: 16130768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of chloroanisoles in cork using headspace solid-phase microextraction and gas chromatography with electron capture detection.
    Riu M; Mestres M; Busto O; Guasch J
    J Chromatogr A; 2006 Feb; 1107(1-2):240-7. PubMed ID: 16405979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-destructive method to determine halophenols and haloanisoles in cork stoppers by headspace sorptive extraction.
    Lorenzo C; Zalacain A; Alonso GL; Salinas MA
    J Chromatogr A; 2006 May; 1114(2):250-4. PubMed ID: 16516907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol.
    Maggi L; Mazzoleni V; Fumi MD; Salinas MR
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Mar; 25(3):265-9. PubMed ID: 18311620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Search for the contamination source of butyltin compounds in wine: agglomerated cork stoppers.
    Jiang GB; Liu JY; Zhou QF
    Environ Sci Technol; 2004 Aug; 38(16):4349-52. PubMed ID: 15382863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mycobiota in Portuguese 'normal' and 'green' cork throughout the manufacturing process of stoppers.
    Danesh P; Velez Caldas FM; Figueiredo Marques JJ; San Romão MV
    J Appl Microbiol; 1997 Jun; 82(6):689-94. PubMed ID: 9202435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a microwave assisted extraction method for the analysis of 2,4,6-trichloroanisole in cork stoppers by SIDA-SBSE-GC-MS.
    Vestner J; Fritsch S; Rauhut D
    Anal Chim Acta; 2010 Feb; 660(1-2):76-80. PubMed ID: 20103146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of odour-causing volatile organic compounds in cork stoppers by multiple headspace solid-phase microextraction.
    Ezquerro O; Tena MT
    J Chromatogr A; 2005 Mar; 1068(2):201-8. PubMed ID: 15830925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of solid-phase extraction and solid-phase microextraction methods for the determination of chlorophenols in cork macerate and wine samples.
    Insa S; Salvadó V; Anticó E
    J Chromatogr A; 2004 Aug; 1047(1):15-20. PubMed ID: 15481456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Desorption of 2,4,6-Trichloroanisole from Cork.
    Monteiro S; Bundaleski N; Lopes P; Cabral M; Teodoro OMND
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purge-and-trap preconcentration system coupled to capillary gas chromatography with atomic emission detection for 2,4,6-trichloroanisole determination in cork stoppers and wines.
    Campillo N; Aguinaga N; Viñas P; López-García I; Hernández-Córdoba M
    J Chromatogr A; 2004 Dec; 1061(1):85-91. PubMed ID: 15633747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncorking Haloanisoles in Wine.
    Keng A; Botezatu A
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ab initio calculation of the proton transfer reaction rate coefficients to volatile organic compounds related to cork taint in wine.
    Bhatia M; Biasioli F; Cappellin L; Piseri P; Manini N
    J Mass Spectrom; 2020 Nov; 55(11):e4592. PubMed ID: 32748482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Cork taint" responsible compounds. Determination of haloanisoles and halophenols in cork matrix: A review.
    Tarasov A; Rauhut D; Jung R
    Talanta; 2017 Dec; 175():82-92. PubMed ID: 28842039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of two SPME fibers for the extraction of some off-flavor cork-taint compounds in bottled wines investigated by GC-HRMS.
    Bianco G; Novario G; Zianni R; Cataldi TR
    Anal Bioanal Chem; 2009 Apr; 393(8):2019-27. PubMed ID: 19190895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungal Diversity of Deteriorated Sparkling Wine and Cork Stoppers in Catalonia, Spain.
    Rodríguez-Andrade E; Stchigel AM; Guarro J; Cano-Lira JF
    Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31861653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elemental characterization of sparkling wine and cork stoppers.
    Debastiani R; Iochims Dos Santos CE; Ferraz Dias J
    Curr Res Food Sci; 2021; 4():670-678. PubMed ID: 34632409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct sample introduction-gas chromatography-mass spectrometry for the determination of haloanisole compounds in cork stoppers.
    Cacho JI; Nicolás J; Viñas P; Campillo N; Hernández-Córdoba M
    J Chromatogr A; 2016 Dec; 1475():74-79. PubMed ID: 27839755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.