These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38077605)

  • 1. Tuning path tracking controllers for autonomous cars using reinforcement learning.
    Vilaça Carrasco A; Silva Sequeira J
    PeerJ Comput Sci; 2023; 9():e1550. PubMed ID: 38077605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Waypoint Tracking Controller for Autonomous Road Vehicles Using ROS Framework.
    Gutiérrez R; López-Guillén E; Bergasa LM; Barea R; Pérez Ó; Gómez-Huélamo C; Arango F; Del Egido J; López-Fernández J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Path-Tracking Control Strategy of Unmanned Vehicle Based on DDPG Algorithm.
    Yao J; Ge Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-fast tuning of neural network controllers with application in path tracking of autonomous vehicle.
    Liang Z; Zhao K; Xie J; Zhang Z
    ISA Trans; 2024 Jun; 149():394-408. PubMed ID: 38692975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLAV-Sim: A Framework for Self-Learning Autonomous Vehicle Simulation.
    Crewe J; Humnabadkar A; Liu Y; Ahmed A; Behera A
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model predictive control of steering torque in shared driving of autonomous vehicles.
    Bao C; Feng J; Wu J; Liu S; Xu G; Xu H
    Sci Prog; 2020; 103(3):36850420950138. PubMed ID: 32885719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator.
    Gutiérrez-Moreno R; Barea R; López-Guillén E; Araluce J; Bergasa LM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition.
    Kiangala KS; Wang Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application improvement of A* algorithm in intelligent vehicle trajectory planning.
    Xiong X; Min H; Yu Y; Wang P
    Math Biosci Eng; 2020 Nov; 18(1):1-21. PubMed ID: 33525078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Reinforcement Learning-Based Strategy of Path Following for Snake Robots with an Onboard Camera.
    Liu L; Guo X; Fang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driver Take-Over Behaviour Study Based on Gaze Focalization and Vehicle Data in CARLA Simulator.
    Araluce J; Bergasa LM; Ocaña M; López-Guillén E; Gutiérrez-Moreno R; Arango JF
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intelligent Vehicle Decision-Making and Trajectory Planning Method Based on Deep Reinforcement Learning in the Frenet Space.
    Wang J; Chu L; Zhang Y; Mao Y; Guo C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LQR-MPC-Based Trajectory-Tracking Controller of Autonomous Vehicle Subject to Coupling Effects and Driving State Uncertainties.
    Yuan T; Zhao R
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Deep Reinforcement Learning Algorithms' Ability to Safely Navigate Challenging Waters.
    Larsen TN; Teigen HØ; Laache T; Varagnolo D; Rasheed A
    Front Robot AI; 2021; 8():738113. PubMed ID: 34589522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning-Based End-to-End Parking for Automatic Parking System.
    Zhang P; Xiong L; Yu Z; Fang P; Yan S; Yao J; Zhou Y
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Modular Pipelines with End-to-End Learning: A Hybrid Approach for Robust and Reliable Autonomous Driving Systems.
    Rosero LA; Gomes IP; da Silva JAR; Przewodowski CA; Wolf DF; Osório FS
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles.
    Havenstrøm ST; Rasheed A; San O
    Front Robot AI; 2020; 7():566037. PubMed ID: 33585570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC.
    Zhang Y; Liu K; Gao F; Zhao F
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Particle Filter-Based Path Tracking Algorithm of Autonomous Trucks with a Single Steering and Driving Module Using a Monocular Camera.
    Kim S; Jang M; La H; Oh K
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.