These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38077616)

  • 21. A novel ensemble of random forest for assisting diagnosis of Parkinson's disease on small handwritten dynamics dataset.
    Xu S; Pan Z
    Int J Med Inform; 2020 Dec; 144():104283. PubMed ID: 33010729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Unsupervised Neural Network Feature Selection and 1D Convolution Neural Network Classification for Screening of Parkinsonism.
    Mian TS
    Diagnostics (Basel); 2022 Jul; 12(8):. PubMed ID: 35892507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification.
    Atteia G; Alnashwan R; Hassan M
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SkinNet-INIO: Multiclass Skin Lesion Localization and Classification Using Fusion-Assisted Deep Neural Networks and Improved Nature-Inspired Optimization Algorithm.
    Hussain M; Khan MA; Damaševičius R; Alasiry A; Marzougui M; Alhaisoni M; Masood A
    Diagnostics (Basel); 2023 Sep; 13(18):. PubMed ID: 37761236
    [No Abstract]   [Full Text] [Related]  

  • 25. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson's disease.
    Solana-Lavalle G; Rosas-Romero R
    Comput Methods Programs Biomed; 2021 Jan; 198():105793. PubMed ID: 33099263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson's disease.
    Peng B; Wang S; Zhou Z; Liu Y; Tong B; Zhang T; Dai Y
    Neurosci Lett; 2017 Jun; 651():88-94. PubMed ID: 28435046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Artificial-Intelligence-Based Approach for Classification of Parkinson's Disease Using Complex and Large Vocal Features.
    Nijhawan R; Kumar M; Arya S; Mendirtta N; Kumar S; Towfek SK; Khafaga DS; Alkahtani HK; Abdelhamid AA
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prognostic factors of Rapid symptoms progression in patients with newly diagnosed parkinson's disease.
    Tsiouris KM; Konitsiotis S; Koutsouris DD; Fotiadis DI
    Artif Intell Med; 2020 Mar; 103():101807. PubMed ID: 32143804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson's disease identification.
    Pereira CR; Pereira DR; Rosa GH; Albuquerque VHC; Weber SAT; Hook C; Papa JP
    Artif Intell Med; 2018 May; 87():67-77. PubMed ID: 29673947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting Parkinson's Disease through Gait Measures Using Machine Learning.
    Li A; Li C
    Diagnostics (Basel); 2022 Oct; 12(10):. PubMed ID: 36292093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic detection of Parkinson's disease from power spectral density of electroencephalography (EEG) signals using deep learning model.
    Göker H
    Phys Eng Sci Med; 2023 Sep; 46(3):1163-1174. PubMed ID: 37245195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soft Attention Based DenseNet Model for Parkinson's Disease Classification Using SPECT Images.
    Thakur M; Kuresan H; Dhanalakshmi S; Lai KW; Wu X
    Front Aging Neurosci; 2022; 14():908143. PubMed ID: 35912076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images.
    Adams MP; Rahmim A; Tang J
    Comput Biol Med; 2021 May; 132():104312. PubMed ID: 33892414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images.
    Kaplan E; Altunisik E; Ekmekyapar Firat Y; Datta Barua P; Dogan S; Baygin M; Burak Demir F; Tuncer T; Palmer E; Tan RS; Yu P; Soar J; Fujita H; Rajendra Acharya U
    Comput Methods Programs Biomed; 2022 Sep; 224():107030. PubMed ID: 35878484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilizing deep learning models in an intelligent spiral drawing classification system for Parkinson's disease classification.
    Farhah N
    Front Med (Lausanne); 2024; 11():1453743. PubMed ID: 39296906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Machine Learning Framework for Multistage Parkinson's Disease Classification Using Acoustic Features of Sustained Korean Vowels.
    Mondol SIMMR; Kim R; Lee S
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tea leaf disease and insect identification based on improved MobileNetV3.
    Li Y; Lu Y; Liu H; Bai J; Yang C; Yuan H; Li X; Xiao Q
    Front Plant Sci; 2024; 15():1459292. PubMed ID: 39399539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parkinson's disease classification with CWNN: Using wavelet transformations and IMU data fusion for improved accuracy.
    Gourrame K; Griškevičius J; Haritopoulos M; Lukšys D; Jatužis D; Kaladytė-Lokominienė R; Bunevičiūtė R; Mickutė G
    Technol Health Care; 2023; 31(6):2447-2455. PubMed ID: 37955069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of Heart Disease Using MFO Based Neural Network on MRI Images.
    K K; N UM; R V
    Curr Med Imaging; 2021; 17(9):1114-1127. PubMed ID: 33573572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel approach combining temporal and spectral features of Arabic online handwriting for Parkinson's disease prediction.
    Aouraghe I; Alae A; Ghizlane K; Mrabti M; Aboulem G; Faouzi B
    J Neurosci Methods; 2020 Jun; 339():108727. PubMed ID: 32298683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.