These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 38077975)

  • 1. Cloke-Wilson rearrangement: a unique gateway to access five-membered heterocycles.
    Nazeer U; Mushtaq A; Zahoor AF; Hafeez F; Shahzadi I; Akhtar R
    RSC Adv; 2023 Nov; 13(50):35695-35732. PubMed ID: 38077975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chalcogen Bonding Catalysis of the Cloke-Wilson Rearrangement.
    Yuan X; Bao L; Zhao Z; Wang Y
    Chemistry; 2023 May; 29(26):e202203822. PubMed ID: 36799517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regio- and Stereospecific Hydrative Cloke-Wilson Rearrangement.
    Wang H; Wang SR
    Org Lett; 2023 Nov; 25(46):8356-8360. PubMed ID: 37962522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cloke-Wilson rearrangement of aroyl-substituted donor-acceptor cylopropanes containing arylethyl donors.
    Thangamalar S; Thangamani M; Srinivasan K
    Org Biomol Chem; 2022 Apr; 20(15):3145-3153. PubMed ID: 35343561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective Sequential Spirocyclopropanation/Cloke-Wilson Rearrangement Reactions for Synthesis of
    Zhang M; Li T; Cui C; Song X; Chang J
    J Org Chem; 2020 Feb; 85(4):2266-2276. PubMed ID: 31920086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organocatalytic Cloke-Wilson Rearrangement: Carbocation-Initiated Tandem Ring Opening/Cyclization of Cyclopropanes under Neutral Conditions.
    Zhang G; Chen L; Hu Z; Zhang Z; Bi J; Li M; Zhang X
    J Org Chem; 2023 Jan; 88(2):1003-1017. PubMed ID: 36626186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem Cyclopropanation/Vinylogous Cloke-Wilson Rearrangement for the Synthesis of Heterocyclic Scaffolds.
    Piotrowski ML; Kerr MA
    Org Lett; 2018 Dec; 20(23):7624-7627. PubMed ID: 30433791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessing the Cloke-Wilson Rearrangement via Conjugate Addition of Phosphoranes to Michael Acceptors: A Route to Cyclopropanes and 5-Membered Ring Heterocycles Investigated by Density Functional and
    Bucher G
    J Org Chem; 2024 Sep; 89(17):12020-12031. PubMed ID: 39136640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chemistry of 1-Acylphosphirane Complexes: A Phosphorus Analogue of the Cloke-Wilson Rearrangement.
    Tian R; Zhang C; Xu Y; Liu C; Duan Z; Mathey F
    Chemistry; 2017 Sep; 23(53):13006-13009. PubMed ID: 28691200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe or Fe-NO catalysis? A quantum chemical investigation of the [Fe(CO)3(NO)](-)-catalyzed Cloke-Wilson rearrangement.
    Klein JE; Knizia G; Miehlich B; Kästner J; Plietker B
    Chemistry; 2014 Jun; 20(24):7254-7. PubMed ID: 24817507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry.
    Augustin AU; Werz DB
    Acc Chem Res; 2021 Mar; 54(6):1528-1541. PubMed ID: 33661599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products.
    Liang L; Guo LD; Tong R
    Acc Chem Res; 2022 Aug; 55(16):2326-2340. PubMed ID: 35916456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A decade update on the application of β-oxodithioesters in heterocyclic synthesis.
    Dong ZB; Gong Z; Dou Q; Cheng B; Wang T
    Org Biomol Chem; 2023 Aug; 21(34):6806-6829. PubMed ID: 37555699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organocatalytic Cloke-Wilson Rearrangement: DABCO-Catalyzed Ring Expansion of Cyclopropyl Ketones to 2,3-Dihydrofurans.
    Zhang J; Tang Y; Wei W; Wu Y; Li Y; Zhang J; Zheng Y; Xu S
    Org Lett; 2017 Jun; 19(12):3043-3046. PubMed ID: 28548502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron- and indium-catalyzed reactions toward nitrogen- and oxygen-containing saturated heterocycles.
    Cornil J; Gonnard L; Bensoussan C; Serra-Muns A; Gnamm C; Commandeur C; Commandeur M; Reymond S; Guérinot A; Cossy J
    Acc Chem Res; 2015 Mar; 48(3):761-73. PubMed ID: 25674664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem construction of biological relevant aliphatic 5-membered N-heterocycles.
    Łowicki D; Przybylski P
    Eur J Med Chem; 2022 May; 235():114303. PubMed ID: 35344904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chalcone-Based Synthesis of Tetrahydropyridazines via Cloke-Wilson-Type Rearrangement-Involved Tandem Reaction between Cyclopropyl Ketones and Hydrazines.
    Meng Y; Gu J; Xin M; Jiang Y; Du Z; Lu G; Jiang J; Chan ASC; Ke Z; Zou Y
    J Org Chem; 2024 Feb; 89(4):2726-2740. PubMed ID: 38307838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Medicinally Privileged Heterocycles through Dielectric Heating.
    Bandyopadhyay D; Banik BK
    Curr Med Chem; 2017; 24(41):4596-4626. PubMed ID: 28240166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges.
    Khan I; Ibrar A; Zaib S
    Top Curr Chem (Cham); 2021 Jan; 379(1):3. PubMed ID: 33398642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.