These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38078153)

  • 1. Absorption and reduced scattering coefficients in epidermis and dermis from a Swedish cohort study.
    Jonasson H; Fredriksson I; Bergstrand S; Östgren CJ; Larsson M; Strömberg T
    J Biomed Opt; 2023 Nov; 28(11):115001. PubMed ID: 38078153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis.
    Shimojo Y; Nishimura T; Hazama H; Ozawa T; Awazu K
    J Biomed Opt; 2020 Apr; 25(4):1-14. PubMed ID: 32356424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort.
    Jonasson H; Fredriksson I; Bergstrand S; Östgren CJ; Larsson M; Strömberg T
    J Biomed Opt; 2018 Sep; 23(12):1-6. PubMed ID: 30267487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q; Ramanujam N
    Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial frequency domain spectroscopy of two layer media.
    Yudovsky D; Durkin AJ
    J Biomed Opt; 2011 Oct; 16(10):107005. PubMed ID: 22029367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique.
    Simpson CR; Kohl M; Essenpreis M; Cope M
    Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy.
    Sharma M; Hennessy R; Markey MK; Tunnell JW
    Biomed Opt Express; 2013 Dec; 5(1):40-53. PubMed ID: 24466475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of porcine skin dermis between 900 nm and 1500 nm.
    Du Y; Hu XH; Cariveau M; Ma X; Kalmus GW; Lu JQ
    Phys Med Biol; 2001 Jan; 46(1):167-81. PubMed ID: 11197670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue.
    Wei HJ; Xing D; He BH; Gu HM; Wu GY; Chen XM
    BMC Gastroenterol; 2009 Aug; 9():64. PubMed ID: 19715589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the influence of collagen fibres in the dermis on skin optical reflectance by Monte Carlo simulation in a nine-layered skin model.
    Masuda Y; Ogura Y; Inagaki Y; Yasui T; Aizu Y
    Skin Res Technol; 2018 May; 24(2):248-255. PubMed ID: 29134755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy.
    Chen YW; Guo JY; Tzeng SY; Chou TC; Lin MJ; Huang LL; Yang CC; Hsu CK; Tseng SH
    Biomed Opt Express; 2016 Feb; 7(2):542-58. PubMed ID: 26977361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies.
    Tseng SH; Hou MF
    J Biomed Opt; 2011 Aug; 16(8):087007. PubMed ID: 21895334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra.
    Sung KB; Shih KW; Hsu FW; Hsieh HP; Chuang MJ; Hsiao YH; Su YH; Tien GH
    J Biomed Opt; 2014; 19(7):77002. PubMed ID: 25027003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations of light scattering properties in human skin with the person's age assessed using a non-invasive technique.
    Golmajer Zima N; Verdel N; Majaron B
    Biomed Opt Express; 2024 Jun; 15(6):3817-3830. PubMed ID: 38867783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quick analysis of optical spectra to quantify epidermal melanin and papillary dermal blood content of skin.
    Jacques SL
    J Biophotonics; 2015 Apr; 8(4):309-16. PubMed ID: 25491716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of layers in optical coherence tomography of skin: comparative analysis of experimental and Monte Carlo simulated images.
    Shlivko IL; Kirillin MY; Donchenko EV; Ellinsky DO; Garanina OE; Neznakhina MS; Agrba PD; Kamensky VA
    Skin Res Technol; 2015 Nov; 21(4):419-25. PubMed ID: 25594488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optics of human skin.
    Anderson RR; Parrish JA
    J Invest Dermatol; 1981 Jul; 77(1):13-9. PubMed ID: 7252245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.