These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38078332)

  • 1. Detection of volatile organic compounds in headspace of
    Bous M; Tielsch M; Papan C; Kaiser E; Weber R; Baumbach JI; Becker SL; Zemlin M; Goedicke-Fritz S
    Front Pediatr; 2023; 11():1151000. PubMed ID: 38078332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria.
    Kunze-Szikszay N; Euler M; Kuhns M; Thieß M; Groß U; Quintel M; Perl T
    BMC Microbiol; 2021 Feb; 21(1):69. PubMed ID: 33641676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria.
    Jünger M; Vautz W; Kuhns M; Hofmann L; Ulbricht S; Baumbach JI; Quintel M; Perl T
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2603-14. PubMed ID: 22327321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid in vitro differentiation of bacteria by ion mobility spectrometry.
    Steppert I; Schönfelder J; Schultz C; Kuhlmeier D
    Appl Microbiol Biotechnol; 2021 May; 105(10):4297-4307. PubMed ID: 33974116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot study for bladder cancer detection with volatile organic compounds using ion mobility spectrometry: a novel urine-based approach.
    Heers H; Gut JM; Hofmann R; Flegar L; Derigs M; Huber J; Baumbach JI; Koczulla AR; Boeselt T
    World J Urol; 2024 May; 42(1):353. PubMed ID: 38795133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS).
    Kunze N; Göpel J; Kuhns M; Jünger M; Quintel M; Perl T
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3665-76. PubMed ID: 23467822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GC-IMS facilitates identification of carbapenem-resistant Klebsiella pneumoniae in simulated blood cultures.
    Li F; Zheng Y; Zhao C; Zhu J; Hang Y; Fang Y; Hu L
    AMB Express; 2024 Apr; 14(1):40. PubMed ID: 38656563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ZKIR Assay, a Real-Time PCR Method for the Detection of
    Barbier E; Rodrigues C; Depret G; Passet V; Gal L; Piveteau P; Brisse S
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005732
    [No Abstract]   [Full Text] [Related]  

  • 10. Rapid non-invasive detection of Influenza-A-infection by multicapillary column coupled ion mobility spectrometry.
    Steppert C; Steppert I; Bollinger T; Sterlacci W
    J Breath Res; 2020 Oct; 15(1):011001. PubMed ID: 33089824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of volatile organic compounds in excrements of preterm neonates.
    Bous M; Tutdibi E; Nourkami-Tutdibi N; Kaiser E; Stutz R; Meyer S; Baumbach JI; Zemlin M; Goedicke-Fritz S
    Eur J Clin Invest; 2023 Jan; 53(1):e13868. PubMed ID: 36062918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds.
    Perl T; Jünger M; Vautz W; Nolte J; Kuhns M; Borg-von Zepelin M; Quintel M
    Mycoses; 2011 Nov; 54(6):e828-37. PubMed ID: 21668516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of four different agar plate methods for rectal swabs, synergy disk tests and metallo-β-lactamase Etest for clinical isolates in detecting carbapenemase-producing Klebsiella pneumoniae.
    Papadimitriou-Olivgeris M; Vamvakopoulou S; Spyropoulou Α; Bartzavali C; Marangos M; Anastassiou ED; Spiliopoulou I; Christofidou M
    J Med Microbiol; 2016 Sep; 65(9):954-961. PubMed ID: 27452448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of hypervirulent
    Wu X; Zhan F; Zhang J; Chen S; Yang B
    Front Public Health; 2022; 10():946370. PubMed ID: 36091562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chromatographic approach to distinguish Gram-positive from Gram-negative bacteria using exogenous volatile organic compound metabolites.
    Ramírez-Guízar S; Sykes H; Perry JD; Schwalbe EC; Stanforth SP; Perez-Perez MCI; Dean JR
    J Chromatogr A; 2017 Jun; 1501():79-88. PubMed ID: 28438317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between Timing of Colonization and Risk of Developing Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infection in Hospitalized Patients.
    Cano Á; Gutiérrez-Gutiérrez B; Machuca I; Torre-Giménez J; Gracia-Ahufinger I; Natera AM; Pérez-Nadales E; Castón JJ; Rodríguez-Baño J; Martínez-Martínez L; Torre-Cisneros J
    Microbiol Spectr; 2022 Apr; 10(2):e0197021. PubMed ID: 35323035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.
    Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP
    Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures.
    Drees C; Vautz W; Liedtke S; Rosin C; Althoff K; Lippmann M; Zimmermann S; Legler TJ; Yildiz D; Perl T; Kunze-Szikszay N
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9091-9101. PubMed ID: 31664484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GC-MS profiling of volatile metabolites produced by
    Filipiak W; Żuchowska K; Marszałek M; Depka D; Bogiel T; Warmuzińska N; Bojko B
    Front Mol Biosci; 2022; 9():1019290. PubMed ID: 36330222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.