These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38078409)

  • 1. Au Octahedral Nanosponges: 3D Plasmonic Nanolenses for Near-Field Focusing.
    Kwon S; Oh MJ; Lee S; Lee G; Jung I; Oh M; Park S
    J Am Chem Soc; 2023 Dec; 145(50):27397-27406. PubMed ID: 38078409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Au Octahedral Nanoheptamers: Single-Particle and Bulk Near-Field Focusing for Surface-Enhanced Raman Scattering.
    Zhao Q; Lee J; Oh MJ; Park W; Lee S; Jung I; Park S
    Nano Lett; 2024 Jan; 24(4):1074-1080. PubMed ID: 38236762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au nanolenses for near-field focusing.
    Lee S; Lee S; Kim JM; Son J; Cho E; Yoo S; Hilal H; Nam JM; Park S
    Chem Sci; 2021 Mar; 12(18):6355-6361. PubMed ID: 34084434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Gold Nanosphere Hexamers Linked with Metal Bridges: Near-Field Focusing for Single Particle Surface Enhanced Raman Scattering.
    Yoo S; Kim J; Kim JM; Son J; Lee S; Hilal H; Haddadnezhad M; Nam JM; Park S
    J Am Chem Soc; 2020 Sep; 142(36):15412-15419. PubMed ID: 32786770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Double-Walled Nanoframes with Face-to-Face Nanogaps for Strong SERS Activity.
    Haddadnezhad M; Jung I; Park W; Lee JW; Park W; Kim J; Park S
    Nano Lett; 2023 Aug; 23(15):6831-6838. PubMed ID: 37083287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Cyclic Au Nanosphere Hexamers.
    Kim J; Lee S; Son J; Kim J; Hilal H; Park M; Jung I; Nam JM; Park S
    Small; 2023 Feb; 19(7):e2205956. PubMed ID: 36464657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid synthesis of monodispersed Au-Ag alloy nanosponges using selective laser melting and dealloying for sensitive near-infrared surface-enhanced Raman scattering.
    Wen H; Hang L; Liang L; Li W; Jiang G
    Nanotechnology; 2021 Oct; 33(2):. PubMed ID: 34571495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A close-packed 3D plasmonic superlattice of truncated octahedral gold nanoframes.
    Yoon J; Jang HJ; Jung I; Park S
    Nanoscale; 2017 Jun; 9(23):7708-7713. PubMed ID: 28561118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al
    Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring.
    Wang L; Patskovsky S; Gauthier-Soumis B; Meunier M
    Small; 2022 Jan; 18(1):e2105209. PubMed ID: 34761520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Hot-Spot Bulk Surface-Enhanced Raman Scattering (SERS) Substrates: Attomolar Detection of Adsorbates with Designer Plasmonic Nanoparticles.
    Zhao Q; Hilal H; Kim J; Park W; Haddadnezhad M; Lee J; Park W; Lee JW; Lee S; Jung I; Park S
    J Am Chem Soc; 2022 Jul; 144(29):13285-13293. PubMed ID: 35839479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octahedron in a Cubic Nanoframe: Strong Near-Field Focusing and Surface-Enhanced Raman Scattering.
    Oh MJ; Kwon S; Lee S; Jung I; Park S
    ACS Nano; 2024 Mar; 18(10):7656-7665. PubMed ID: 38416014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Silica@Au Hybrid Nanostars for Enhanced SERS and Photothermal Effect.
    Kaur G; Kaur V; Kaur N; Kaur C; Sood K; Shanavas A; Sen T
    Chemphyschem; 2023 Nov; 24(22):e202200809. PubMed ID: 37515550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon Near-Field Coupling of Bimetallic Nanostars and a Hierarchical Bimetallic SERS "Hot Field": Toward Ultrasensitive Simultaneous Detection of Multiple Cardiorenal Syndrome Biomarkers.
    Su Y; Xu S; Zhang J; Chen X; Jiang LP; Zheng T; Zhu JJ
    Anal Chem; 2019 Jan; 91(1):864-872. PubMed ID: 30499654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates.
    Li X; Lin X; Fang G; Dong H; Li J; Cong S; Wang L; Yang S
    J Colloid Interface Sci; 2022 Aug; 620():388-398. PubMed ID: 35436620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones.
    Kim J; Hilal H; Haddadnezhad M; Lee J; Park W; Park W; Lee JW; Jung I; Park S
    ACS Nano; 2022 Jun; 16(6):9214-9221. PubMed ID: 35446559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remarkable SERS Detection by Hybrid Cu
    Sheng S; Ren Y; Yang S; Wang Q; Sheng P; Zhang X; Liu Y
    ACS Omega; 2020 Jul; 5(28):17703-17714. PubMed ID: 32715257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties.
    Lin S; Guan H; Liu Y; Huang S; Li J; Hasi W; Xu Y; Zou J; Dong B
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53289-53299. PubMed ID: 34704435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring-in-a-Triangle Nanoframes: Integrating with Intra- and Interhotspots for Highly Amplified Near-Field Focusing.
    Go S; Yoo S; Son J; Lee S; Lee J; Lee S; Kim J; Park M; Park W; Kim JM; Nam JM; Park S
    Nano Lett; 2022 Feb; 22(4):1734-1740. PubMed ID: 35138110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.