These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38078869)
21. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays. Hou H; Wu X; Hu Z; Gao S; Yuan Z Langmuir; 2023 Dec; 39(51):18825-18833. PubMed ID: 38096374 [TBL] [Abstract][Full Text] [Related]
22. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove. Lu D; Zhao M; Zhang H; Yang Y; Zheng Y Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257 [TBL] [Abstract][Full Text] [Related]
23. Coalescence-Induced Droplet Jumping. Liu C; Zhao M; Zheng Y; Cheng L; Zhang J; Tee CATH Langmuir; 2021 Jan; 37(3):983-1000. PubMed ID: 33443436 [TBL] [Abstract][Full Text] [Related]
24. How coalescing droplets jump. Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210 [TBL] [Abstract][Full Text] [Related]
25. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085 [TBL] [Abstract][Full Text] [Related]
26. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation. Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032 [TBL] [Abstract][Full Text] [Related]
27. How Superhydrophobic Grooves Drive Single-Droplet Jumping. Chu F; Yan X; Miljkovic N Langmuir; 2022 Apr; 38(14):4452-4460. PubMed ID: 35348343 [TBL] [Abstract][Full Text] [Related]
28. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. Liu C; Zhao M; Zheng Y; Lu D; Song L ACS Appl Mater Interfaces; 2021 Jul; 13(27):32542-32554. PubMed ID: 34180653 [TBL] [Abstract][Full Text] [Related]
30. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Xie FF; Lu G; Wang XD; Wang BB Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379 [TBL] [Abstract][Full Text] [Related]
31. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845 [TBL] [Abstract][Full Text] [Related]
32. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces. Yin C; Wang T; Che Z; Jia M; Sun K Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548 [TBL] [Abstract][Full Text] [Related]
33. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics. Li H; Yang W; Aili A; Zhang T Langmuir; 2017 Aug; 33(34):8574-8581. PubMed ID: 28767250 [TBL] [Abstract][Full Text] [Related]
34. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces. Ölçeroğlu E; McCarthy M ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239 [TBL] [Abstract][Full Text] [Related]
35. Metal Surface Engineering for Extreme Sustenance of Jumping Droplet Condensation. Donati M; Regulagadda K; Lam CWE; Milionis A; Sharma CS; Poulikakos D Langmuir; 2024 Jan; 40(2):1257-1265. PubMed ID: 38156900 [TBL] [Abstract][Full Text] [Related]
36. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets. Gao S; Wu X Langmuir; 2022 Oct; 38(41):12674-12681. PubMed ID: 36201740 [TBL] [Abstract][Full Text] [Related]
37. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces. Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085 [TBL] [Abstract][Full Text] [Related]
38. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces. Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353 [TBL] [Abstract][Full Text] [Related]
39. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. Yan X; Qin Y; Chen F; Zhao G; Sett S; Hoque MJ; Rabbi KF; Zhang X; Wang Z; Li L; Chen F; Feng J; Miljkovic N ACS Nano; 2020 Oct; 14(10):12796-12809. PubMed ID: 33052666 [TBL] [Abstract][Full Text] [Related]
40. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]