These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38079365)

  • 1. Adaptive Energy Reference Time Domain Passivity Control of Haptic Interfaces.
    Rad NF; Nagamune R
    IEEE Trans Haptics; 2024; 17(3):360-371. PubMed ID: 38079365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Prediction for Teleoperation Systems That Combine the Time Domain Passivity Approach with Perceptual Deadband-Based Haptic Data Reduction.
    Xu X; Schuwerk C; Cizmeci B; Steinbach E
    IEEE Trans Haptics; 2016; 9(4):560-573. PubMed ID: 27992322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chattering-Free Time Domain Passivity Approach.
    Choi H; Balachandran R; Ryu JH
    IEEE Trans Haptics; 2022; 15(3):572-581. PubMed ID: 35622789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.
    Rebelo J; Schiele A
    IEEE Trans Haptics; 2015; 8(1):79-89. PubMed ID: 25343769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Network-Based Passivity Control of Teleoperation System Under Time-Varying Delays.
    Da Sun ; Naghdy F; Haiping Du
    IEEE Trans Cybern; 2017 Jul; 47(7):1666-1680. PubMed ID: 30148710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Energy Compensation Scheme for Quality Enhancement in Time-Delayed Teleoperation With Multi-DoF Haptic Data Reduction and Communication.
    Xu X; Singh H; Liu Q; Panzirsch M; Hulin T; Steinbach E
    IEEE Trans Haptics; 2021; 14(4):936-944. PubMed ID: 34383653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Control for Improved Transparency in Haptic Simulations.
    Abdossalami A; Sirouspour S
    IEEE Trans Haptics; 2009; 2(1):2-14. PubMed ID: 27788092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic interfaces for virtual environments: perceived instability and force constancy in haptic sensing of virtual surfaces.
    Tan HZ
    Can J Exp Psychol; 2007 Sep; 61(3):265-75. PubMed ID: 17974320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rendering Stiff Virtual Walls Using Model Matching Based Haptic Controller.
    Desai I; Gupta A; Chakraborty D
    IEEE Trans Haptics; 2019; 12(2):166-178. PubMed ID: 30703037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teleoperated Surgical Robot with Adaptive Interactive Control Architecture for Tissue Identification.
    Sheng Y; Cheng H; Wang Y; Zhao H; Ding H
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HapFIC: An Adaptive Force/Position Controller for Safe Environment Interaction in Articulated Systems.
    Tiseo C; Merkt W; Babarahmati KK; Wolfslag W; Havoutis I; Vijayakumar S; Mistry M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1432-1440. PubMed ID: 34280105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L2 -stability of haptic systems with projection-based force reflection.
    Polushin IG; Hasan MZ
    IEEE Trans Haptics; 2014; 7(3):405-10. PubMed ID: 25248168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passivity criterion for sampled-data bilateral teleoperation systems.
    Jazayeri A; Tavakoli M
    IEEE Trans Haptics; 2013; 6(3):363-9. PubMed ID: 24808332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Force Bounding Approach in Joint Space for Interacting With Dynamic Multi-Degrees of Freedom Virtual Objects.
    Baek SY; Park S; Ryu J
    IEEE Trans Haptics; 2019; 12(2):217-223. PubMed ID: 30176606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Position-Control Based Approach to Haptic Rendering of Stiff Objects.
    Wang Y; Feng L; Andersson K
    IEEE Trans Haptics; 2021; 14(3):646-659. PubMed ID: 33315572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Stabilization of Delay-Induced Instability of Haptic Rendering in a Stiffness Discrimination Task.
    Nomberg R; Nisky I
    IEEE Trans Haptics; 2023; 16(1):33-45. PubMed ID: 36417719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General Discretization Method for Enhanced Kinesthetic Haptic Stability.
    Pecly L; Hashtrudi-Zaad K
    IEEE Trans Haptics; 2023; 16(2):261-275. PubMed ID: 37079408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.