BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38079444)

  • 1. How well do rudimentary plasticity rules predict adult visual object learning?
    Lee MJ; DiCarlo JJ
    PLoS Comput Biol; 2023 Dec; 19(12):e1011713. PubMed ID: 38079444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Object Recognition Behavior in Human and Monkey.
    Rajalingham R; Schmidt K; DiCarlo JJ
    J Neurosci; 2015 Sep; 35(35):12127-36. PubMed ID: 26338324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural representational geometry underlies few-shot concept learning.
    Sorscher B; Ganguli S; Sompolinsky H
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2200800119. PubMed ID: 36251997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?
    Cao Y; Grossberg S; Markowitz J
    Neural Netw; 2011 Dec; 24(10):1050-61. PubMed ID: 21596523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combination of Hebbian and predictive plasticity learns invariant object representations in deep sensory networks.
    Halvagal MS; Zenke F
    Nat Neurosci; 2023 Nov; 26(11):1906-1915. PubMed ID: 37828226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Mechanisms Underlying Visual Object Recognition.
    Afraz A; Yamins DL; DiCarlo JJ
    Cold Spring Harb Symp Quant Biol; 2014; 79():99-107. PubMed ID: 26092883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.
    Majaj NJ; Hong H; Solomon EA; DiCarlo JJ
    J Neurosci; 2015 Sep; 35(39):13402-18. PubMed ID: 26424887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Texture-like representation of objects in human visual cortex.
    Jagadeesh AV; Gardner JL
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2115302119. PubMed ID: 35439063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common Object Representations for Visual Production and Recognition.
    Fan JE; Yamins DLK; Turk-Browne NB
    Cogn Sci; 2018 Nov; 42(8):2670-2698. PubMed ID: 30125986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient multi-scale representation of visual objects using a biologically plausible spike-latency code and winner-take-all inhibition.
    Sanchez-Garcia M; Chauhan T; Cottereau BR; Beyeler M
    Biol Cybern; 2023 Apr; 117(1-2):95-111. PubMed ID: 37004546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet.
    Rolls ET; Mills WPC
    Neurobiol Learn Mem; 2018 Jul; 152():20-31. PubMed ID: 29723671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of biologically grounded models of the early visual system on standard object recognition tasks.
    Teichmann M; Larisch R; Hamker FH
    Neural Netw; 2021 Dec; 144():210-228. PubMed ID: 34507042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating Visual Production and Recognition of Objects in Human Visual Cortex.
    Fan JE; Wammes JD; Gunn JB; Yamins DLK; Norman KA; Turk-Browne NB
    J Neurosci; 2020 Feb; 40(8):1710-1721. PubMed ID: 31871278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.