These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Properties of different types of dry electrodes for wearable smart monitoring devices. Popović-Maneski L; Ivanović MD; Atanasoski V; Miletić M; Zdolšek S; Bojović B; Hadžievski L Biomed Tech (Berl); 2020 Aug; 65(4):405-415. PubMed ID: 32238599 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Dry-Contact EEG Electrodes and an Empirical Comparison of Ag/AgCl and IrO Kappel SL; Kidmose P Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3127-3130. PubMed ID: 36086317 [TBL] [Abstract][Full Text] [Related]
9. Wireless CardioS framework for continuous ECG acquisition. Sriraam N; Srinivasulu A; Prakash VS J Med Eng Technol; 2023; 47(4):201-216. PubMed ID: 37910047 [TBL] [Abstract][Full Text] [Related]
10. A novel dry active electrode for EEG recording. Fonseca C; Silva Cunha JP; Martins RE; Ferreira VM; Marques de Sá JP; Barbosa MA; Martins da Silva A IEEE Trans Biomed Eng; 2007 Jan; 54(1):162-5. PubMed ID: 17260869 [TBL] [Abstract][Full Text] [Related]
11. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems. Li P; Yin C; Li M; Li H; Yang B Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544 [TBL] [Abstract][Full Text] [Related]
12. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces. Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014 [No Abstract] [Full Text] [Related]
13. Novel semi-dry electrodes for brain-computer interface applications. Wang F; Li G; Chen J; Duan Y; Zhang D J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253 [TBL] [Abstract][Full Text] [Related]
14. A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement. Gao K; Wu N; Ji B; Liu J Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765945 [TBL] [Abstract][Full Text] [Related]
15. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929 [TBL] [Abstract][Full Text] [Related]
16. Scalp electrode impedance, infection risk, and EEG data quality. Ferree TC; Luu P; Russell GS; Tucker DM Clin Neurophysiol; 2001 Mar; 112(3):536-44. PubMed ID: 11222977 [TBL] [Abstract][Full Text] [Related]
17. Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings. Fiedler P; Fonseca C; Pedrosa P; Martins A; Vaz F; Griebel S; Haueisen J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():547-50. PubMed ID: 24109745 [TBL] [Abstract][Full Text] [Related]
19. Nanofiber web textile dry electrodes for long-term biopotential recording. Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303 [TBL] [Abstract][Full Text] [Related]
20. A new method to assess skin treatments for lowering the impedance and noise of individual gelled Ag-AgCl electrodes. Piervirgili G; Petracca F; Merletti R Physiol Meas; 2014 Oct; 35(10):2101-18. PubMed ID: 25243492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]