These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38081116)

  • 1. MetaBCI: An open-source platform for brain-computer interfaces.
    Mei J; Luo R; Xu L; Zhao W; Wen S; Wang K; Xiao X; Meng J; Huang Y; Tang J; Cheng L; Xu M; Ming D
    Comput Biol Med; 2024 Jan; 168():107806. PubMed ID: 38081116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creamino: A Cost-Effective, Open-Source EEG-Based BCI System.
    Chiesi M; Guermandi M; Placati S; Scarselli EF; Guerrieri R
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):900-909. PubMed ID: 30080140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wyrm: A Brain-Computer Interface Toolbox in Python.
    Venthur B; Dähne S; Höhne J; Heller H; Blankertz B
    Neuroinformatics; 2015 Oct; 13(4):471-86. PubMed ID: 26001643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An open-source human-in-the-loop BCI research framework: method and design.
    Gemborn Nilsson M; Tufvesson P; Heskebeck F; Johansson M
    Front Hum Neurosci; 2023; 17():1129362. PubMed ID: 37441434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-Computer Interfaces in Visualized Medicine.
    Si X; Zhou Y; Li S; Zhang X; Han S; Xiang S; Ming D
    Adv Exp Med Biol; 2023; 1199():127-153. PubMed ID: 37460730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-speed hybrid brain-computer interface with more than 200 targets.
    Han J; Xu M; Xiao X; Yi W; Jung TP; Ming D
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608342
    [No Abstract]   [Full Text] [Related]  

  • 9. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the existing problems of estimating the information transfer rate in online brain-computer interfaces.
    Yuan P; Gao X; Allison B; Wang Y; Bin G; Gao S
    J Neural Eng; 2013 Apr; 10(2):026014. PubMed ID: 23448963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification.
    Appriou A; Pillette L; Trocellier D; Dutartre D; Cichocki A; Lotte F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEDUSA©: A novel Python-based software ecosystem to accelerate brain-computer interface and cognitive neuroscience research.
    Santamaría-Vázquez E; Martínez-Cagigal V; Marcos-Martínez D; Rodríguez-González V; Pérez-Velasco S; Moreno-Calderón S; Hornero R
    Comput Methods Programs Biomed; 2023 Mar; 230():107357. PubMed ID: 36693292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mushu, a free- and open source BCI signal acquisition, written in Python.
    Venthur B; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1786-8. PubMed ID: 23366257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury.
    Davis KC; Meschede-Krasa B; Cajigas I; Prins NW; Alver C; Gallo S; Bhatia S; Abel JH; Naeem JA; Fisher L; Raza F; Rifai WR; Morrison M; Ivan ME; Brown EN; Jagid JR; Prasad A
    J Neuroeng Rehabil; 2022 Jun; 19(1):53. PubMed ID: 35659259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.
    McCrimmon CM; Fu JL; Wang M; Lopes LS; Wang PT; Karimi-Bidhendi A; Liu CY; Heydari P; Nenadic Z; Do AH
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2313-2320. PubMed ID: 28207382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current trends in hardware and software for brain-computer interfaces (BCIs).
    Brunner P; Bianchi L; Guger C; Cincotti F; Schalk G
    J Neural Eng; 2011 Apr; 8(2):025001. PubMed ID: 21436536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 20. An artificial intelligence that increases simulated brain-computer interface performance.
    Olsen S; Zhang J; Liang KF; Lam M; Riaz U; Kao JC
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33978599
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.