These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38081260)

  • 1. High efficiency radio frequency antennas for amplifier free quantum sensing applications.
    Mahtab S; Milas P; Veal DT; Spencer MG; Ozturk B
    Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Planar Microwave Antenna for Nitrogen Vacancy Center Based Sensing Applications.
    Opaluch OR; Oshnik N; Nelz R; Neu E
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond.
    Sasaki K; Monnai Y; Saijo S; Fujita R; Watanabe H; Ishi-Hayase J; Itoh KM; Abe E
    Rev Sci Instrum; 2016 May; 87(5):053904. PubMed ID: 27250439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
    Barbiero M; Castelletto S; Gan X; Gu M
    Light Sci Appl; 2017 Nov; 6(11):e17085. PubMed ID: 30167213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doubly Resonant Nanoantennas on Diamond for Spatial Addressing of Spin States.
    Jaffe T; Sorias O; Gal L; Kalish R; Orenstein M
    Nano Lett; 2017 Jul; 17(7):4217-4222. PubMed ID: 28657323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NV microscopy of thermally controlled stresses caused by thin Cr
    Berzins A; Smits J; Petruhins A; Rimsa R; Mozolevskis G; Zubkins M; Fescenko I
    Opt Express; 2023 May; 31(11):17950-17963. PubMed ID: 37381516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers.
    Savitsky A; Zhang J; Suter D
    Rev Sci Instrum; 2023 Feb; 94(2):023101. PubMed ID: 36859032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperfine Interactions in the NV-
    Nizovtsev AP; Pushkarchuk AL; Kilin SY; Kargin NI; Gusev AS; Smirnova MO; Jelezko F
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam.
    Chen B; Hou X; Ge F; Zhang X; Ji Y; Li H; Qian P; Wang Y; Xu N; Du J
    Nano Lett; 2020 Nov; 20(11):8267-8272. PubMed ID: 33135901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband coplanar waveguide for optically detected magnetic resonance of nitrogen-vacancy centers in diamond.
    Jia W; Shi Z; Qin X; Rong X; Du J
    Rev Sci Instrum; 2018 Jun; 89(6):064705. PubMed ID: 29960527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Diamond Quantum Sensing in Bio-Membranes.
    Tan Y; Hu X; Hou Y; Chu Z
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble.
    Chen Y; Li T; Chai G; Wang D; Lu B; Guo A; Tian J
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave Heating Effect on Diamond Samples of Nitrogen-Vacancy Centers.
    Wang Z; Zhang J; Feng X; Xing L
    ACS Omega; 2022 Sep; 7(35):31538-31543. PubMed ID: 36092553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited-State Optically Detected Magnetic Resonance of Spin Defects in Hexagonal Boron Nitride.
    Mu Z; Cai H; Chen D; Kenny J; Jiang Z; Ru S; Lyu X; Koh TS; Liu X; Aharonovich I; Gao W
    Phys Rev Lett; 2022 May; 128(21):216402. PubMed ID: 35687466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-enhanced sensitivity of spin-based sensors based on a diamond ensemble of nitrogen vacancy color centers.
    Guo H; Chen Y; Wu D; Zhao R; Tang J; Ma Z; Xue C; Zhang W; Liu J
    Opt Lett; 2017 Feb; 42(3):403-406. PubMed ID: 28146487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-tip endoscope for optical and microwave control.
    Dix S; Gutsche J; Waller E; von Freymann G; Widera A
    Rev Sci Instrum; 2022 Sep; 93(9):095104. PubMed ID: 36182466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Label-Free Diamond Microfluidic DNA Sensor Based on Active Nitrogen-Vacancy Center Charge State Control.
    Krečmarová M; Gulka M; Vandenryt T; Hrubý J; Fekete L; Hubík P; Taylor A; Mortet V; Thoelen R; Bourgeois E; Nesládek M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18500-18510. PubMed ID: 33849273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent Effects of Laser Irradiation on Ensembles of Nitrogen-Vacancy Centers in Bulk and Nanodiamonds: Implications for Biosensing.
    Olivares-Postigo D; Gorrini F; Bitonto V; Ackermann J; Giri R; Krueger A; Bifone A
    Nanoscale Res Lett; 2022 Sep; 17(1):95. PubMed ID: 36161373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond.
    Labanowski D; Bhallamudi VP; Guo Q; Purser CM; McCullian BA; Hammel PC; Salahuddin S
    Sci Adv; 2018 Sep; 4(9):eaat6574. PubMed ID: 30202783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.
    Hsiao WW; Hui YY; Tsai PC; Chang HC
    Acc Chem Res; 2016 Mar; 49(3):400-7. PubMed ID: 26882283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.