These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 38082372)
1. Machine learning analyses identify multi-modal frailty factors that selectively discriminate four cohorts in the Alzheimer's disease spectrum: a COMPASS-ND study. Bohn L; Drouin SM; McFall GP; Rolfson DB; Andrew MK; Dixon RA BMC Geriatr; 2023 Dec; 23(1):837. PubMed ID: 38082372 [TBL] [Abstract][Full Text] [Related]
2. Cognitive Speed in Neurodegenerative Disease: Comparing Mean Rate and Inconsistency Within and Across the Alzheimer's and Lewy Body Spectra in the COMPASS-ND Study. Caballero HS; McFall GP; Gee M; MacDonald S; Phillips NA; Fogarty J; Montero-Odasso M; Camicioli R; Dixon RA J Alzheimers Dis; 2024; 100(2):579-601. PubMed ID: 38875040 [TBL] [Abstract][Full Text] [Related]
3. Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Karikari TK; Pascoal TA; Ashton NJ; Janelidze S; Benedet AL; Rodriguez JL; Chamoun M; Savard M; Kang MS; Therriault J; Schöll M; Massarweh G; Soucy JP; Höglund K; Brinkmalm G; Mattsson N; Palmqvist S; Gauthier S; Stomrud E; Zetterberg H; Hansson O; Rosa-Neto P; Blennow K Lancet Neurol; 2020 May; 19(5):422-433. PubMed ID: 32333900 [TBL] [Abstract][Full Text] [Related]
5. Olfactory Phenotypes Differentiate Cognitively Unimpaired Seniors from Alzheimer's Disease and Mild Cognitive Impairment: A Combined Machine Learning and Traditional Statistical Approach. Li J; Bur AM; Villwock MR; Shankar S; Palmer G; Sykes KJ; Villwock JA J Alzheimers Dis; 2021; 81(2):641-650. PubMed ID: 33843686 [TBL] [Abstract][Full Text] [Related]
6. A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer's Disease Spectrum. Massetti N; Russo M; Franciotti R; Nardini D; Mandolini GM; Granzotto A; Bomba M; Delli Pizzi S; Mosca A; Scherer R; Onofrj M; Sensi SL; ; J Alzheimers Dis; 2022; 85(4):1639-1655. PubMed ID: 34958014 [TBL] [Abstract][Full Text] [Related]
7. Functional activity level reported by an informant is an early predictor of Alzheimer's disease. Vik A; Kociński M; Rye I; Lundervold AJ; Lundervold AS BMC Geriatr; 2023 Mar; 23(1):205. PubMed ID: 37003981 [TBL] [Abstract][Full Text] [Related]
8. A Community-Based Study Identifying Metabolic Biomarkers of Mild Cognitive Impairment and Alzheimer's Disease Using Artificial Intelligence and Machine Learning. Yilmaz A; Ustun I; Ugur Z; Akyol S; Hu WT; Fiandaca MS; Mapstone M; Federoff H; Maddens M; Graham SF J Alzheimers Dis; 2020; 78(4):1381-1392. PubMed ID: 33164929 [TBL] [Abstract][Full Text] [Related]
9. Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer's dementia. Frölich L; Peters O; Lewczuk P; Gruber O; Teipel SJ; Gertz HJ; Jahn H; Jessen F; Kurz A; Luckhaus C; Hüll M; Pantel J; Reischies FM; Schröder J; Wagner M; Rienhoff O; Wolf S; Bauer C; Schuchhardt J; Heuser I; Rüther E; Henn F; Maier W; Wiltfang J; Kornhuber J Alzheimers Res Ther; 2017 Oct; 9(1):84. PubMed ID: 29017593 [TBL] [Abstract][Full Text] [Related]
10. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
11. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches. Chang CH; Lin CH; Liu CY; Huang CS; Chen SJ; Lin WC; Yang HT; Lane HY J Psychopharmacol; 2021 Mar; 35(3):265-272. PubMed ID: 33586518 [TBL] [Abstract][Full Text] [Related]
12. Identifying key multi-modal predictors of incipient dementia in Parkinson's disease: a machine learning analysis and Tree SHAP interpretation. McFall GP; Bohn L; Gee M; Drouin SM; Fah H; Han W; Li L; Camicioli R; Dixon RA Front Aging Neurosci; 2023; 15():1124232. PubMed ID: 37455938 [TBL] [Abstract][Full Text] [Related]
14. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning-Based Classification of Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Dementia Using Neuroimage and Plasma Biomarkers. Chiu SI; Fan LY; Lin CH; Chen TF; Lim WS; Jang JR; Chiu MJ ACS Chem Neurosci; 2022 Dec; 13(23):3263-3270. PubMed ID: 36378559 [TBL] [Abstract][Full Text] [Related]
16. Alzheimer's Biomarkers From Multiple Modalities Selectively Discriminate Clinical Status: Relative Importance of Salivary Metabolomics Panels, Genetic, Lifestyle, Cognitive, Functional Health and Demographic Risk Markers. Sapkota S; Huan T; Tran T; Zheng J; Camicioli R; Li L; Dixon RA Front Aging Neurosci; 2018; 10():296. PubMed ID: 30333744 [No Abstract] [Full Text] [Related]
17. Identification of profiles associated with conversions between the Alzheimer's disease stages, using a machine learning approach. Dauphinot V; Laurent M; Prodel M; Civet A; Vainchtock A; Moutet C; Krolak-Salmon P; Garnier-Crussard A Alzheimers Res Ther; 2024 Jul; 16(1):166. PubMed ID: 39061107 [TBL] [Abstract][Full Text] [Related]
18. A Clinically-Translatable Machine Learning Algorithm for the Prediction of Alzheimer's Disease Conversion in Individuals with Mild and Premild Cognitive Impairment. Grassi M; Perna G; Caldirola D; Schruers K; Duara R; Loewenstein DA J Alzheimers Dis; 2018; 61(4):1555-1573. PubMed ID: 29355115 [TBL] [Abstract][Full Text] [Related]