These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38082547)

  • 1. Improving the capturing ability of swirl-based microfluidic chip by introducing baffle wall.
    Dang Y; Zhang Q; Ou Z; Hu S
    Biotechnol Appl Biochem; 2024 Apr; 71(2):336-355. PubMed ID: 38082547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle Manipulation Performed on a Swirl-Based Microfluidic Chip Featured by Dual-Stagnation Points.
    Dang Y; Hu S; Ou Z; Zhang Q
    Langmuir; 2023 Aug; 39(32):11245-11258. PubMed ID: 37535467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle.
    Çetin B; Öner SD; Baranoğlu B
    Electrophoresis; 2017 Jun; 38(11):1407-1418. PubMed ID: 28164365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics in Biotechnology: Overview and Status Quo.
    Bahnemann J; Grünberger A
    Adv Biochem Eng Biotechnol; 2022; 179():1-16. PubMed ID: 35333948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
    Derakhshan R; Bozorgzadeh A; Ramiar A
    J Chromatogr A; 2023 Aug; 1702():464079. PubMed ID: 37263054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle sorting method based on swirl induction.
    Hu S; Zhang Q; Ou Z; Dang Y
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37909455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators.
    Baylon-Cardiel JL; Jesús-Pérez NM; Chávez-Santoscoy AV; Lapizco-Encinas BH
    Lab Chip; 2010 Dec; 10(23):3235-42. PubMed ID: 20936247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Microfluidic Chip Flow Rate Uniformity for Cell Activity Detection.
    Zhang Y; Huang L; Guo J; Ji J; Wei T; Fu L
    Langmuir; 2023 May; 39(18):6548-6555. PubMed ID: 37093638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomedical Applications of Microfluidic Devices: A Review.
    Gharib G; Bütün İ; Muganlı Z; Kozalak G; Namlı İ; Sarraf SS; Ahmadi VE; Toyran E; van Wijnen AJ; Koşar A
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise and convenient size barcode on microfluidic chip for multiplex biomarker detection.
    Tang M; Chen J; Lei J; Ai Z; Liu F; Hong SL; Liu K
    Analyst; 2021 Sep; 146(19):5892-5897. PubMed ID: 34494037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.