These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38082571)
1. Federated Learning for Diabetic Retinopathy Detection in a Multi-center Fundus Screening Network. Matta S; Hassine MB; Lecat C; Borderie L; Guilcher AL; Massin P; Cochener B; Lamard M; Quellec G Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082571 [TBL] [Abstract][Full Text] [Related]
2. Automatic Screening for Ocular Anomalies Using Fundus Photographs. Matta S; Lamard M; Conze PH; Le Guilcher A; Ricquebourg V; Benyoussef AA; Massin P; Rottier JB; Cochener B; Quellec G Optom Vis Sci; 2022 Mar; 99(3):281-291. PubMed ID: 34897234 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
4. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
5. Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis. Wu JH; Liu TYA; Hsu WT; Ho JH; Lee CC J Med Internet Res; 2021 Jul; 23(7):e23863. PubMed ID: 34407500 [TBL] [Abstract][Full Text] [Related]
6. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Islam MM; Yang HC; Poly TN; Jian WS; Jack Li YC Comput Methods Programs Biomed; 2020 Jul; 191():105320. PubMed ID: 32088490 [TBL] [Abstract][Full Text] [Related]
8. Towards population-independent, multi-disease detection in fundus photographs. Matta S; Lamard M; Conze PH; Le Guilcher A; Lecat C; Carette R; Basset F; Massin P; Rottier JB; Cochener B; Quellec G Sci Rep; 2023 Jul; 13(1):11493. PubMed ID: 37460629 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance. Nielsen KB; Lautrup ML; Andersen JKH; Savarimuthu TR; Grauslund J Ophthalmol Retina; 2019 Apr; 3(4):294-304. PubMed ID: 31014679 [TBL] [Abstract][Full Text] [Related]
10. In-Person Verification of Deep Learning Algorithm for Diabetic Retinopathy Screening Using Different Techniques Across Fundus Image Devices. Wongchaisuwat N; Trinavarat A; Rodanant N; Thoongsuwan S; Phasukkijwatana N; Prakhunhungsit S; Preechasuk L; Wongchaisuwat P Transl Vis Sci Technol; 2021 Nov; 10(13):17. PubMed ID: 34767624 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Li Z; He Y; Keel S; Meng W; Chang RT; He M Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863 [TBL] [Abstract][Full Text] [Related]
12. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
13. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. González-Gonzalo C; Sánchez-Gutiérrez V; Hernández-Martínez P; Contreras I; Lechanteur YT; Domanian A; van Ginneken B; Sánchez CI Acta Ophthalmol; 2020 Jun; 98(4):368-377. PubMed ID: 31773912 [TBL] [Abstract][Full Text] [Related]
15. The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach. Matschinske J; Späth J; Bakhtiari M; Probul N; Kazemi Majdabadi MM; Nasirigerdeh R; Torkzadehmahani R; Hartebrodt A; Orban BA; Fejér SJ; Zolotareva O; Das S; Baumbach L; Pauling JK; Tomašević O; Bihari B; Bloice M; Donner NC; Fdhila W; Frisch T; Hauschild AC; Heider D; Holzinger A; Hötzendorfer W; Hospes J; Kacprowski T; Kastelitz M; List M; Mayer R; Moga M; Müller H; Pustozerova A; Röttger R; Saak CC; Saranti A; Schmidt HHHW; Tschohl C; Wenke NK; Baumbach J J Med Internet Res; 2023 Jul; 25():e42621. PubMed ID: 37436815 [TBL] [Abstract][Full Text] [Related]
16. Federated Learning: A Cross-Institutional Feasibility Study of Deep Learning Based Intracranial Tumor Delineation Framework for Stereotactic Radiosurgery. Lee WK; Hong JS; Lin YH; Lu YF; Hsu YY; Lee CC; Yang HC; Wu CC; Lu CF; Sun MH; Pan HC; Wu HM; Chung WY; Guo WY; You WC; Wu YT J Magn Reson Imaging; 2024 Jun; 59(6):1967-1975. PubMed ID: 37572087 [TBL] [Abstract][Full Text] [Related]
17. Automatic detection of rare pathologies in fundus photographs using few-shot learning. Quellec G; Lamard M; Conze PH; Massin P; Cochener B Med Image Anal; 2020 Apr; 61():101660. PubMed ID: 32028213 [TBL] [Abstract][Full Text] [Related]
18. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification. Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882 [TBL] [Abstract][Full Text] [Related]
19. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704 [TBL] [Abstract][Full Text] [Related]
20. Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Krause J; Gulshan V; Rahimy E; Karth P; Widner K; Corrado GS; Peng L; Webster DR Ophthalmology; 2018 Aug; 125(8):1264-1272. PubMed ID: 29548646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]