These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38082575)
1. Comparative analysis of deep learning methods for lesion detection on full screening mammography. Ribeiro RF; Torres HR; Oliveira B; Morais P; Vilaca JL Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082575 [TBL] [Abstract][Full Text] [Related]
2. Deep learning methods for lesion detection on mammography images: a comparative analysis. Ribeiro RF; Gomes-Fonseca J; Torres HR; Oliveira B; Vilhena E; Morais P; Vilaca JL Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3526-3529. PubMed ID: 36086472 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Shen L; Margolies LR; Rothstein JH; Fluder E; McBride R; Sieh W Sci Rep; 2019 Aug; 9(1):12495. PubMed ID: 31467326 [TBL] [Abstract][Full Text] [Related]
4. Few-shot learning with deformable convolution for multiscale lesion detection in mammography. Li C; Zhang D; Tian Z; Du S; Qu Y Med Phys; 2020 Jul; 47(7):2970-2985. PubMed ID: 32160321 [TBL] [Abstract][Full Text] [Related]
5. A divide and conquer approach to maximise deep learning mammography classification accuracies. Jaamour A; Myles C; Patel A; Chen SJ; McMillan L; Harris-Birtill D PLoS One; 2023; 18(5):e0280841. PubMed ID: 37235566 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening. Aboutalib SS; Mohamed AA; Berg WA; Zuley ML; Sumkin JH; Wu S Clin Cancer Res; 2018 Dec; 24(23):5902-5909. PubMed ID: 30309858 [TBL] [Abstract][Full Text] [Related]
7. Deep learning for mass detection in Full Field Digital Mammograms. Agarwal R; Díaz O; Yap MH; Lladó X; Martí R Comput Biol Med; 2020 Jun; 121():103774. PubMed ID: 32339095 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets. Ueda D; Yamamoto A; Onoda N; Takashima T; Noda S; Kashiwagi S; Morisaki T; Fukumoto S; Shiba M; Morimura M; Shimono T; Kageyama K; Tatekawa H; Murai K; Honjo T; Shimazaki A; Kabata D; Miki Y PLoS One; 2022; 17(3):e0265751. PubMed ID: 35324962 [TBL] [Abstract][Full Text] [Related]
9. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms. Su Y; Liu Q; Xie W; Hu P Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358 [TBL] [Abstract][Full Text] [Related]
10. Improved PAA algorithm for breast mass detection in mammograms. Liu W; Zeng P; Jiang J; Chen J; Chen L; Hu C; Jian W; Diao X; Wang X Comput Methods Programs Biomed; 2024 Jun; 251():108211. PubMed ID: 38744058 [TBL] [Abstract][Full Text] [Related]
11. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Al-Antari MA; Han SM; Kim TS Comput Methods Programs Biomed; 2020 Nov; 196():105584. PubMed ID: 32554139 [TBL] [Abstract][Full Text] [Related]
13. Deep Convolutional Neural Networks for breast cancer screening. Chougrad H; Zouaki H; Alheyane O Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427 [TBL] [Abstract][Full Text] [Related]
14. Deep learning for detection of iso-dense, obscure masses in mammographically dense breasts. Rangarajan K; Aggarwal P; Gupta DK; Dhanakshirur R; Baby A; Pal C; Gupta AK; Hari S; Banerjee S; Arora C Eur Radiol; 2023 Nov; 33(11):8112-8121. PubMed ID: 37209125 [TBL] [Abstract][Full Text] [Related]
15. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Lotter W; Diab AR; Haslam B; Kim JG; Grisot G; Wu E; Wu K; Onieva JO; Boyer Y; Boxerman JL; Wang M; Bandler M; Vijayaraghavan GR; Gregory Sorensen A Nat Med; 2021 Feb; 27(2):244-249. PubMed ID: 33432172 [TBL] [Abstract][Full Text] [Related]
16. Automated mammographic mass detection using deformable convolution and multiscale features. Peng J; Bao C; Hu C; Wang X; Jian W; Liu W Med Biol Eng Comput; 2020 Jul; 58(7):1405-1417. PubMed ID: 32297129 [TBL] [Abstract][Full Text] [Related]
17. Developing breast lesion detection algorithms for digital breast tomosynthesis: Leveraging false positive findings. Hossain MB; Nishikawa RM; Lee J Med Phys; 2022 Dec; 49(12):7596-7608. PubMed ID: 35916103 [TBL] [Abstract][Full Text] [Related]
18. Deep learning empowered breast cancer diagnosis: Advancements in detection and classification. Ahmad J; Akram S; Jaffar A; Ali Z; Bhatti SM; Ahmad A; Rehman SU PLoS One; 2024; 19(7):e0304757. PubMed ID: 38990817 [TBL] [Abstract][Full Text] [Related]
19. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841 [TBL] [Abstract][Full Text] [Related]
20. A preliminary study on computerized lesion localization in MR mammography using 3D nMITR maps, multilayer cellular neural networks, and fuzzy c-partitioning. Ertas G; Gulcur HO; Tunaci M; Osman O; Ucan ON Med Phys; 2008 Jan; 35(1):195-205. PubMed ID: 18293575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]