These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38082642)

  • 41. Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction.
    Zhang Y; Li T; Tao H; Liu F; Hu B; Wu M; Yu H
    Front Bioeng Biotechnol; 2023; 11():1332689. PubMed ID: 38234302
    [No Abstract]   [Full Text] [Related]  

  • 42. Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke.
    Morone G; Palomba A; Martino Cinnera A; Agostini M; Aprile I; Arienti C; Paci M; Casanova E; Marino D; LA Rosa G; Bressi F; Sterzi S; Gandolfi M; Giansanti D; Perrero L; Battistini A; Miccinilli S; Filoni S; Sicari M; Petrozzino S; Solaro CM; Gargano S; Benanti P; Boldrini P; Bonaiuti D; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzoleni S; Mazzon S; Molteni F; Petrarca M; Picelli A; Posteraro F; Senatore M; Turchetti G; Straudi S;
    Eur J Phys Rehabil Med; 2021 Apr; 57(2):238-245. PubMed ID: 33491943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Effect of Applying Robot-Assisted Task-Oriented Training Using Human-Robot Collaborative Interaction Force Control Technology on Upper Limb Function in Stroke Patients: Preliminary Findings.
    Qu Q; Lin Y; He Z; Fu J; Zou F; Jiang Z; Guo F; Jia J
    Biomed Res Int; 2021; 2021():9916492. PubMed ID: 34368358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AGREE: an upper-limb robotic platform for personalized rehabilitation, concept and clinical study design.
    Gasperina SD; Longatelli V; Panzenbeck M; Luciani B; Morosini A; Piantoni A; Tropea P; Braghin F; Pedrocchi A; Gandolla M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176092
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experiences of patients who had a stroke and rehabilitation professionals with upper limb rehabilitation robots: a qualitative systematic review protocol.
    Chockalingam M; Vasanthan LT; Balasubramanian S; Sriram V
    BMJ Open; 2022 Sep; 12(9):e065177. PubMed ID: 36123077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism.
    Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J
    Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice.
    Duret C; Mazzoleni S
    NeuroRehabilitation; 2017; 41(1):5-15. PubMed ID: 28505985
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke.
    Zbytniewska M; Kanzler CM; Jordan L; Salzmann C; Liepert J; Lambercy O; Gassert R
    J Neuroeng Rehabil; 2021 Jul; 18(1):115. PubMed ID: 34271954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients.
    Franceschini M; Goffredo M; Pournajaf S; Paravati S; Agosti M; De Pisi F; Galafate D; Posteraro F
    PLoS One; 2018; 13(2):e0193235. PubMed ID: 29466440
    [TBL] [Abstract][Full Text] [Related]  

  • 50. User Experience Evaluation of Upper Limb Rehabilitation Robots: Implications for Design Optimization: A Pilot Study.
    Yeh TN; Chou LW
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960702
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: A single-blind, randomised, controlled trial.
    Dehem S; Gilliaux M; Stoquart G; Detrembleur C; Jacquemin G; Palumbo S; Frederick A; Lejeune T
    Ann Phys Rehabil Med; 2019 Sep; 62(5):313-320. PubMed ID: 31028900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A decision-theoretic approach in the design of an adaptive upper-limb stroke rehabilitation robot.
    Huq R; Kan P; Goetschalckx R; Hébert D; Hoey J; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975418. PubMed ID: 22275621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Impact of Cognitive Impairment on Robot-Based Upper-Limb Motor Assessment in Chronic Stroke.
    Bui KD; Lyn B; Roland M; Wamsley CA; Mendonca R; Johnson MJ
    Neurorehabil Neural Repair; 2022 Sep; 36(9):587-595. PubMed ID: 35999810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.
    Contu S; Hussain A; Kager S; Budhota A; Deshmukh VA; Kuah CWK; Yam LHL; Xiang L; Chua KSG; Masia L; Campolo D
    PLoS One; 2017; 12(11):e0183257. PubMed ID: 29161264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robot-Assisted Rehabilitation Architecture Supported by a Distributed Data Acquisition System.
    Chellal AA; Lima J; Gonçalves J; Fernandes FP; Pacheco F; Monteiro F; Brito T; Soares S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.