These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38082655)
1. Comparison of Wrist and Forearm EMG for Multi-day Biometric Authentication. Fu T; Pradhan A; He J; He C; Jiang N Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082655 [TBL] [Abstract][Full Text] [Related]
2. Multi-day dataset of forearm and wrist electromyogram for hand gesture recognition and biometrics. Pradhan A; He J; Jiang N Sci Data; 2022 Nov; 9(1):733. PubMed ID: 36450807 [TBL] [Abstract][Full Text] [Related]
3. A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors. Kim H; Kim H; Chun SY; Kang JH; Oakley I; Lee Y; Ryu JO; Kim MJ; Park IK; Hong HK; Jo YC; Kim SP Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127306 [TBL] [Abstract][Full Text] [Related]
4. Cross-day analysis of Multicode Surface Electromyography based Biometrics for Personal Identification. Pradhan A; He J; Jiang N Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082784 [TBL] [Abstract][Full Text] [Related]
5. A novel biometric authentication approach using ECG and EMG signals. Belgacem N; Fournier R; Nait-Ali A; Bereksi-Reguig F J Med Eng Technol; 2015 May; 39(4):226-38. PubMed ID: 25836061 [TBL] [Abstract][Full Text] [Related]
6. Comparing online wrist and forearm EMG-based control using a rhythm game-inspired evaluation environment. Meredith R; Eddy E; Bateman S; Scheme E J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39079541 [No Abstract] [Full Text] [Related]
7. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669 [TBL] [Abstract][Full Text] [Related]
8. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements. Pan L; Crouch DL; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862 [TBL] [Abstract][Full Text] [Related]
9. A Study of Personal Recognition Method Based on EMG Signal. Lu L; Mao J; Wang W; Ding G; Zhang Z IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):681-691. PubMed ID: 32746348 [TBL] [Abstract][Full Text] [Related]
10. Discrimination of forearm's motions by surface EMG signals using neural network. Itakura N; Kinbara Y; Fuwa T; Sakamoto K Appl Human Sci; 1996 Nov; 15(6):287-94. PubMed ID: 9008983 [TBL] [Abstract][Full Text] [Related]
11. EMG-based learning approach for estimating wrist motion. El-Khoury S; Batzianoulis I; Antuvan CW; Contu S; Masia L; Micera S; Billard A Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6732-5. PubMed ID: 26737838 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model. Li J; Yue S; Pan L IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968 [TBL] [Abstract][Full Text] [Related]
13. Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes. Dai C; Zhu Z; Martinez-Luna C; Hunt TR; Farrell TR; Clancy EA J Electromyogr Kinesiol; 2019 Aug; 47():10-18. PubMed ID: 31009829 [TBL] [Abstract][Full Text] [Related]
14. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. Crouch DL; Huang H J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972 [TBL] [Abstract][Full Text] [Related]
15. Comparing two methods to record maximal voluntary contractions and different electrode positions in recordings of forearm extensor muscle activity: Refining risk assessments for work-related wrist disorders. Dahlqvist C; Nordander C; Granqvist L; Forsman M; Hansson GÅ Work; 2018; 59(2):231-242. PubMed ID: 29355119 [TBL] [Abstract][Full Text] [Related]
16. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals. Crouch DL; He Huang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1132-5. PubMed ID: 26736465 [TBL] [Abstract][Full Text] [Related]
17. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. Muceli S; Jiang N; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017 [TBL] [Abstract][Full Text] [Related]
18. Effect of Subcutaneous Muscle Displacement of Flexor Carpi Radialis on Surface Electromyography. Pan L; Liu K; Li J IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1244-1251. PubMed ID: 35533166 [TBL] [Abstract][Full Text] [Related]
19. From Forearm to Wrist: Deep Learning for Surface Electromyography-Based Gesture Recognition. He J; Niu X; Zhao P; Lin C; Jiang N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():102-111. PubMed ID: 38064321 [TBL] [Abstract][Full Text] [Related]
20. Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier. D'Accolti D; Dejanovic K; Cappello L; Mastinu E; Ortiz-Catalan M; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2023; 31():208-217. PubMed ID: 36327175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]