These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38082708)
1. Automated Gas Chromatography Peak Alignment: A Deep Learning Approach using Greedy Optimization and Simulation. Cao L; Zang W; Sharma R; Tabartehfarahani A; Thota C; Devi Sivakumar A; Lam A; Fan X; Ward KR; Ansari S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082708 [TBL] [Abstract][Full Text] [Related]
2. High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis. Johnson KJ; Wright BW; Jarman KH; Synovec RE J Chromatogr A; 2003 May; 996(1-2):141-55. PubMed ID: 12830915 [TBL] [Abstract][Full Text] [Related]
3. Evidence of endogenous volatile organic compounds as biomarkers of diseases in alveolar breath. Sarbach C; Stevens P; Whiting J; Puget P; Humbert M; Cohen-Kaminsky S; Postaire E Ann Pharm Fr; 2013 Jul; 71(4):203-15. PubMed ID: 23835018 [TBL] [Abstract][Full Text] [Related]
4. Gas chromatography-mass spectroscopy optimization by computer simulation, application to the analysis of 93 volatile organic compounds in workplace ambient air. Randon J; Maret L; Ferronato C Anal Chim Acta; 2014 Feb; 812():258-64. PubMed ID: 24491790 [TBL] [Abstract][Full Text] [Related]
5. Peak alignment of gas chromatography-mass spectrometry data with deep learning. Li M; Wang XR J Chromatogr A; 2019 Oct; 1604():460476. PubMed ID: 31488294 [TBL] [Abstract][Full Text] [Related]
6. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds. Ou-Yang CF; Huang YX; Huang TJ; Chen YS; Wang CH; Wang JL J Chromatogr A; 2016 Sep; 1462():107-14. PubMed ID: 27492597 [TBL] [Abstract][Full Text] [Related]
7. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems. de Blas M; Navazo M; Alonso L; Durana N; Iza J Sci Total Environ; 2011 Nov; 409(24):5459-69. PubMed ID: 21978614 [TBL] [Abstract][Full Text] [Related]
8. BARCHAN: Blob Alignment for Robust CHromatographic ANalysis. Couprie C; Duval L; Moreaud M; Hénon S; Tebib M; Souchon V J Chromatogr A; 2017 Feb; 1484():65-72. PubMed ID: 28081899 [TBL] [Abstract][Full Text] [Related]
9. Automated signal processing applied to volatile-based inspection of greenhouse crops. Jansen R; Hofstee JW; Bouwmeester H; van Henten E Sensors (Basel); 2010; 10(8):7122-33. PubMed ID: 22163594 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecewise alignment algorithm. Pierce KM; Wright BW; Synovec RE J Chromatogr A; 2007 Feb; 1141(1):106-16. PubMed ID: 17174960 [TBL] [Abstract][Full Text] [Related]
11. Evaluating polyvinylidene fluoride - carbon black composites as solid phase microextraction coatings for the detection of urinary volatile organic compounds by gas chromatography-mass spectrometry. Woollam M; Grocki P; Schulz E; Siegel AP; Deiss F; Agarwal M J Chromatogr A; 2022 Dec; 1685():463606. PubMed ID: 36370629 [TBL] [Abstract][Full Text] [Related]
12. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data. Batterman S; Su FC; Li S; Mukherjee B; Jia C; Res Rep Health Eff Inst; 2014 Jun; (181):3-63. PubMed ID: 25145040 [TBL] [Abstract][Full Text] [Related]
13. Measurement of exhaled volatile organic compounds from patients with chronic obstructive pulmonary disease (COPD) using closed gas loop GC-IMS and GC-APCI-MS. Allers M; Langejuergen J; Gaida A; Holz O; Schuchardt S; Hohlfeld JM; Zimmermann S J Breath Res; 2016 Apr; 10(2):026004. PubMed ID: 27058460 [TBL] [Abstract][Full Text] [Related]
14. Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography-A review. Makoś P; Przyjazny A; Boczkaj G J Chromatogr A; 2019 May; 1592():143-160. PubMed ID: 30691729 [TBL] [Abstract][Full Text] [Related]
15. Vacuum ultraviolet absorption spectroscopy in combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic compounds in breath gas: A feasibility study. Gruber B; Groeger T; Harrison D; Zimmermann R J Chromatogr A; 2016 Sep; 1464():141-6. PubMed ID: 27545394 [TBL] [Abstract][Full Text] [Related]
16. Volatile organic compounds at swine facilities: a critical review. Ni JQ; Robarge WP; Xiao C; Heber AJ Chemosphere; 2012 Oct; 89(7):769-88. PubMed ID: 22682363 [TBL] [Abstract][Full Text] [Related]
17. Prediction of breast cancer risk with volatile biomarkers in breath. Phillips M; Cataneo RN; Cruz-Ramos JA; Huston J; Ornelas O; Pappas N; Pathak S Breast Cancer Res Treat; 2018 Jul; 170(2):343-350. PubMed ID: 29569019 [TBL] [Abstract][Full Text] [Related]
18. Fast and automated biomarker detection in breath samples with machine learning. Skarysz A; Salman D; Eddleston M; Sykora M; Hunsicker E; Nailon WH; Darnley K; McLaren DB; Thomas CLP; Soltoggio A PLoS One; 2022; 17(4):e0265399. PubMed ID: 35413057 [TBL] [Abstract][Full Text] [Related]
19. Fruit volatile analysis using an electronic nose. Vallone S; Lloyd NW; Ebeler SE; Zakharov F J Vis Exp; 2012 Mar; (61):. PubMed ID: 22491160 [TBL] [Abstract][Full Text] [Related]
20. Rapid In Situ Analysis of Plant Emission for Disease Diagnosis Using a Portable Gas Chromatography Device. Sharma R; Zhou M; Hunter MD; Fan X J Agric Food Chem; 2019 Jul; 67(26):7530-7537. PubMed ID: 31184878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]