These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38082718)

  • 41. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings.
    Stauffer F; Thielen M; Sauter C; Chardonnens S; Bachmann S; Tybrandt K; Peters C; Hierold C; Vörös J
    Adv Healthc Mater; 2018 Apr; 7(7):e1700994. PubMed ID: 29330962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of chitosan/Au-TiO
    Song Y; Li P; Li M; Li H; Li C; Sun D; Yang B
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():740-747. PubMed ID: 28629075
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes.
    Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT
    Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Auditory Steady-State Responses Across Chirp Repetition Rates For Ear-EEG And Scalp EEG.
    Christensen CB; Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1376-1379. PubMed ID: 30440648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.
    Chi YM; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4218-21. PubMed ID: 19964104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ear-EEG-Based Objective Hearing Threshold Estimation Evaluated on Normal Hearing Subjects.
    Christensen CB; Harte JM; Lunner T; Kidmose P
    IEEE Trans Biomed Eng; 2018 May; 65(5):1026-1034. PubMed ID: 28796603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing Disposable EEG Cap for Infant Recordings at the Neonatal Intensive Care Unit.
    Asayesh A; Ilen E; Metsäranta M; Vanhatalo S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scalp electrode impedance, infection risk, and EEG data quality.
    Ferree TC; Luu P; Russell GS; Tucker DM
    Clin Neurophysiol; 2001 Mar; 112(3):536-44. PubMed ID: 11222977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An in-the-ear platform for recording electroencephalogram.
    Looney D; Park C; Kidmose P; Rank ML; Ungstrup M; Rosenkranz K; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6882-5. PubMed ID: 22255920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D Printed Dry EEG Electrodes.
    Krachunov S; Casson AJ
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control.
    Yao S; Zhou W; Hinson R; Dong P; Wu S; Ives J; Hu X; Huang H; Zhu Y
    Adv Mater Technol; 2022 Oct; 7(10):. PubMed ID: 36276406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous Dry and Gel-Based High-Density Electroencephalography Recordings.
    Fiedler P; Graichen U; Zimmer E; Haueisen J
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 2-Scale topography dry electrode for biopotential measurements.
    Vanlerberghe F; De Volder M; de Beeck MO; Penders J; Reynaerts D; Puers R; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1892-5. PubMed ID: 22254700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flower electrodes for comfortable dry electroencephalography.
    Warsito IF; Komosar M; Bernhard MA; Fiedler P; Haueisen J
    Sci Rep; 2023 Oct; 13(1):16589. PubMed ID: 37789022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-cured polymer electrodes for non-invasive EEG recordings.
    de Camp NV; Kalinka G; Bergeler J
    Sci Rep; 2018 Sep; 8(1):14041. PubMed ID: 30232392
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of a Low-Cost EEG Monitoring System and Dry Electrodes toward Clinical Use in the Neonatal ICU.
    O'Sullivan M; Temko A; Bocchino A; O'Mahony C; Boylan G; Popovici E
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design, Fabrication, and Experimental Validation of Novel Flexible Silicon-Based Dry Sensors for Electroencephalography Signal Measurements.
    Yu YH; Lu SW; Liao LD; Lin CT
    IEEE J Transl Eng Health Med; 2014; 2():2700307. PubMed ID: 27170884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.