These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 38082800)
1. Real-Time-Capable Muscle Force Estimation for Monitoring Robotic Rehabilitation Therapy in the Intensive Care Unit. Peper KK; Aasmann A; Jensen ER; Haddadin S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082800 [TBL] [Abstract][Full Text] [Related]
2. Estimating Joint Kinematics and Muscles Forces During Robotic Rehabilitation to Detect and Counteract Reduced Ankle Mobility. Peper KK; Jensen ER; Haddadin S IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941178 [TBL] [Abstract][Full Text] [Related]
3. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Hussain S; Jamwal PK; Ghayesh MH Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768 [TBL] [Abstract][Full Text] [Related]
4. Design of a 6-DoF Cost-effective Differential-drive based Robotic system for Upper-Limb Stroke Rehabilitation. Jonna P; Rao M Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1423-1427. PubMed ID: 36085923 [TBL] [Abstract][Full Text] [Related]
5. Testing robot-based assist-as-needed therapy for improving active participation of a patient during early neurorehabilitation: a case study. Peper KK; Zardykhan D; Egger M; Steinbock M; Muller F; Hildenbrand X; Koenig A; Jensen ER; Haddadin S IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176105 [TBL] [Abstract][Full Text] [Related]
6. The effect of the 2-UPS/RR ankle rehabilitation robot with coupling biomechanical model on muscle behaviors. Shengxian Y; Zongxing L; Jing W; Lin G Med Biol Eng Comput; 2023 Feb; 61(2):421-434. PubMed ID: 36459326 [TBL] [Abstract][Full Text] [Related]
7. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field. Asl HJ; Narikiyo T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727 [TBL] [Abstract][Full Text] [Related]
8. Gastrocnemius myoelectric control of a robotic hip exoskeleton. Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141 [TBL] [Abstract][Full Text] [Related]
9. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging. Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012 [TBL] [Abstract][Full Text] [Related]
10. Biofeedback Signals for Robotic Rehabilitation: Assessment of Wrist Muscle Activation Patterns in Healthy Humans. Semprini M; Cuppone AV; Delis I; Squeri V; Panzeri S; Konczak J IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):883-892. PubMed ID: 28114024 [TBL] [Abstract][Full Text] [Related]
11. Rehabilitation exercise progression for the gluteus medius muscle with consideration for iliopsoas tendinitis: an in vivo electromyography study. Philippon MJ; Decker MJ; Giphart JE; Torry MR; Wahoff MS; LaPrade RF Am J Sports Med; 2011 Aug; 39(8):1777-85. PubMed ID: 21566069 [TBL] [Abstract][Full Text] [Related]
12. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training. Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459 [TBL] [Abstract][Full Text] [Related]
13. A Control Scheme to Minimize Muscle Energy for Power Assistant Robotic Systems Under Unknown External Perturbation. Lee J; Kim M; Kim K IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2313-2327. PubMed ID: 28692980 [TBL] [Abstract][Full Text] [Related]
14. Invariant hip moment pattern while walking with a robotic hip exoskeleton. Lewis CL; Ferris DP J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995 [TBL] [Abstract][Full Text] [Related]
15. Maintaining subject engagement during robotic rehabilitation with a minimal assist-as-needed (mAAN) controller. Pehlivan AU; Losey DP; Rose CG; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():62-67. PubMed ID: 28813794 [TBL] [Abstract][Full Text] [Related]
16. An Optimal Method of Training the Specific Lower Limb Muscle Group Using an Exoskeletal Robot. Hwang B; Oh BM; Jeon D IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):830-838. PubMed ID: 29641387 [TBL] [Abstract][Full Text] [Related]
17. Muscle fatigue assessment during robot-mediated movements. Mugnosso M; Marini F; Holmes M; Morasso P; Zenzeri J J Neuroeng Rehabil; 2018 Dec; 15(1):119. PubMed ID: 30558608 [TBL] [Abstract][Full Text] [Related]
18. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
19. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton. Chen W; Wu S; Zhou T; Xiong C Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650 [TBL] [Abstract][Full Text] [Related]
20. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques. Mokri C; Bamdad M; Abolghasemi V Med Biol Eng Comput; 2022 Mar; 60(3):683-699. PubMed ID: 35029815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]