These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38082970)

  • 1. The Effect of Muscle Artifact Reduction Methods on Few-channel SSVEPs during Head Movements.
    Namura N; Kanoga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness analysis of decoding SSVEPs in humans with head movements using a moving visual flicker.
    Kanoga S; Nakanishi M; Murai A; Tada M; Kanemura A
    J Neural Eng; 2019 Dec; 17(1):016009. PubMed ID: 31722321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-simulation Experiments for Quantifying the Performance of SSVEP-based BCI after Reducing Artifacts from Trapezius Muscles.
    Kanoga S; Nakanishi M; Murai A; Tada M; Kanemura A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4824-4827. PubMed ID: 30441426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance SSVEP-based BCI using imperceptible flickers.
    Ming G; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36669202
    [No Abstract]   [Full Text] [Related]  

  • 7. Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.
    Hsu HT; Shyu KK; Hsu CC; Lee LH; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2754-2764. PubMed ID: 34847036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training the spatially-coded SSVEP BCI on the fly.
    Maÿe A; Mutz M; Engel AK
    J Neurosci Methods; 2022 Aug; 378():109652. PubMed ID: 35716819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Adaptive Artifact Subspace Reconstruction Based on Hebbian/Anti-Hebbian Learning Networks for Enhancing BCI Performance.
    Tsai BY; Diddi SVS; Ko LW; Wang SJ; Chang CY; Jung TP
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35714085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces.
    Xiao X; Wang L; Xu M; Wang K; Jung TP; Ming D
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37683663
    [No Abstract]   [Full Text] [Related]  

  • 18. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs.
    Ming G; Zhong H; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704
    [No Abstract]   [Full Text] [Related]  

  • 19. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions.
    Chien YY; Lin FC; Zao JK; Chou CC; Huang YP; Kuo HY; Wang Y; Jung TP; Shieh HD
    J Neural Eng; 2017 Feb; 14(1):016018. PubMed ID: 28000607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.