These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 38082970)
21. A High-Rate Hybrid BCI System Based on High-Frequency SSVEP and sEMG. Cui H; Chi X; Wang L; Chen X IEEE J Biomed Health Inform; 2023 Dec; 27(12):5688-5698. PubMed ID: 37792662 [TBL] [Abstract][Full Text] [Related]
22. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system. Lee PL; Sie JJ; Liu YJ; Wu CH; Lee MH; Shu CH; Li PH; Sun CW; Shyu KK Ann Biomed Eng; 2010 Jul; 38(7):2383-97. PubMed ID: 20177780 [TBL] [Abstract][Full Text] [Related]
23. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. Ming G; Pei W; Chen H; Gao X; Wang Y J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060 [No Abstract] [Full Text] [Related]
24. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality. Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130 [No Abstract] [Full Text] [Related]
25. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces. Zhu F; Jiang L; Dong G; Gao X; Wang Y Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754 [TBL] [Abstract][Full Text] [Related]
26. Towards an independent brain-computer interface using steady state visual evoked potentials. Allison BZ; McFarland DJ; Schalk G; Zheng SD; Jackson MM; Wolpaw JR Clin Neurophysiol; 2008 Feb; 119(2):399-408. PubMed ID: 18077208 [TBL] [Abstract][Full Text] [Related]
27. Effect of higher frequency on the classification of steady-state visual evoked potentials. Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712 [TBL] [Abstract][Full Text] [Related]
28. Enhancing Detection of SSVEPs with Intermodulation Frequencies Using Individual Calibration Data. Chen X; Wang Y; Zhang S; Gao X Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2531-2534. PubMed ID: 30440923 [TBL] [Abstract][Full Text] [Related]
29. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding. Ge S; Jiang Y; Wang P; Wang H; Zheng W IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435 [TBL] [Abstract][Full Text] [Related]
30. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related]
31. An approximation approach for rendering visual flickers in SSVEP-based BCI using monitor refresh rate. Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2176-9. PubMed ID: 24110153 [TBL] [Abstract][Full Text] [Related]
32. Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs. Zhang X; Qiu S; Zhang Y; Wang K; Wang Y; He H J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35853437 [No Abstract] [Full Text] [Related]
33. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort. Choi KM; Park S; Im CH Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804 [TBL] [Abstract][Full Text] [Related]
34. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Wu Y; Li M; Wang J J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070 [TBL] [Abstract][Full Text] [Related]
35. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials. Dreyer AM; Herrmann CS; Rieger JW Front Hum Neurosci; 2017; 11():391. PubMed ID: 28798676 [TBL] [Abstract][Full Text] [Related]
36. Almost free of calibration for SSVEP-based brain-computer interfaces. Luo R; Xiao X; Chen E; Meng L; Jung TP; Xu M; Ming D J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37948768 [No Abstract] [Full Text] [Related]
37. A novel stimulation for multi-class SSVEP-based brain-computer interface using patterns of time-varying frequencies. Dehzangi O; Nathan V; Zong C; Lee C; Kim I; Jafari R Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():118-21. PubMed ID: 25569911 [TBL] [Abstract][Full Text] [Related]
38. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies. Chen X; Wang Y; Zhang S; Gao S; Hu Y; Gao X J Neural Eng; 2017 Apr; 14(2):026013. PubMed ID: 28091397 [TBL] [Abstract][Full Text] [Related]
39. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]