These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38083018)

  • 1. A Novel Method for Multi-subject fMRI Data Analysis: Independent Component Analysis with Clustering Embedded (ICA-CE).
    Du Y; Zhu W; Zhang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clusterwise Independent Component Analysis (C-ICA): Using fMRI resting state networks to cluster subjects and find neurofunctional subtypes.
    Durieux J; Rombouts SARB; de Vos F; Koini M; Wilderjans TF
    J Neurosci Methods; 2022 Dec; 382():109718. PubMed ID: 36209940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches.
    Du Y; Allen EA; He H; Sui J; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1026-9. PubMed ID: 25570136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting intrinsic functional networks with feature-based group independent component analysis.
    Calhoun VD; Allen E
    Psychometrika; 2013 Apr; 78(2):243-59. PubMed ID: 25107615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data.
    Du Y; Lin D; Yu Q; Sui J; Chen J; Rachakonda S; Adali T; Calhoun VD
    Front Neurosci; 2017; 11():267. PubMed ID: 28579940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale sparse functional networks from resting state fMRI.
    Li H; Satterthwaite TD; Fan Y
    Neuroimage; 2017 Aug; 156():1-13. PubMed ID: 28483721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel group ICA approach based on multi-scale individual component clustering. Application to a large sample of fMRI data.
    Naveau M; Doucet G; Delcroix N; Petit L; Zago L; Crivello F; Jobard G; Mellet E; Tzourio-Mazoyer N; Mazoyer B; Joliot M
    Neuroinformatics; 2012 Jul; 10(3):269-85. PubMed ID: 22426994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis.
    Meyer-Baese A; Wismueller A; Lange O
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):387-98. PubMed ID: 15484444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artifact removal in the context of group ICA: A comparison of single-subject and group approaches.
    Du Y; Allen EA; He H; Sui J; Wu L; Calhoun VD
    Hum Brain Mapp; 2016 Mar; 37(3):1005-25. PubMed ID: 26859308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks.
    Du Y; He X; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3263-3266. PubMed ID: 34891937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal multiscale ICA could invariantly extract task (motor) modes from wavelet subbands of fMRI data.
    Chen Z; Chen Z
    Comput Methods Programs Biomed; 2021 Sep; 208():106249. PubMed ID: 34218171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks.
    Yang Z; Zuo XN; Wang P; Li Z; LaConte SM; Bandettini PA; Hu XP
    Neuroimage; 2012 Oct; 63(1):403-14. PubMed ID: 22789741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing personalized brain functional networks from fMRI using self-supervised deep learning.
    Li H; Srinivasan D; Zhuo C; Cui Z; Gur RE; Gur RC; Oathes DJ; Davatzikos C; Satterthwaite TD; Fan Y
    Med Image Anal; 2023 Apr; 85():102756. PubMed ID: 36706636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified framework for group independent component analysis for multi-subject fMRI data.
    Guo Y; Pagnoni G
    Neuroimage; 2008 Sep; 42(3):1078-93. PubMed ID: 18650105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
    Spadone S; de Pasquale F; Mantini D; Della Penna S
    Neuroimage; 2012 Sep; 62(3):1912-23. PubMed ID: 22634861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Independent Component Analysis Dimensionality on the Test-Retest Reliability of Resting-State Functional Connectivity.
    Ma Y; MacDonald Iii AW
    Brain Connect; 2021 Dec; 11(10):875-886. PubMed ID: 33926215
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.