These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38083021)

  • 1. Low-field MRI's Spark on Implant Safety: A Closer Look at Radiofrequency Heating.
    Sanpitak P; Bhusal B; Vu J; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T.
    Vu J; Bhusal B; Nguyen BT; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6107-6110. PubMed ID: 33019364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
    Kazemivalipour E; Bhusal B; Vu J; Lin S; Nguyen BT; Kirsch J; Nowac E; Pilitsis J; Rosenow J; Atalar E; Golestanirad L
    Magn Reson Med; 2021 Sep; 86(3):1560-1572. PubMed ID: 33961301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient's body composition can significantly affect RF power deposition in the tissue around DBS implants: ramifications for lead management strategies and MRI field-shaping techniques.
    Bhusal B; Keil B; Rosenow J; Kazemivalipour E; Golestanirad L
    Phys Med Biol; 2021 Jan; 66(1):015008. PubMed ID: 33238247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the accuracy of Tier 4 simulations to predict RF heating of wire implants during magnetic resonance imaging at 1.5 T.
    Sanpitak P; Bhusal B; Nguyen BT; Vu J; Chow K; Bi X; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4982-4985. PubMed ID: 34892326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Device Configuration and Patient's Body Composition on the RF Heating and Nonsusceptibility Artifact of Deep Brain Stimulation Implants During MRI at 1.5T and 3T.
    Bhusal B; Nguyen BT; Sanpitak PP; Vu J; Elahi B; Rosenow J; Nolt MJ; Lopez-Rosado R; Pilitsis J; DiMarzio M; Golestanirad L
    J Magn Reson Imaging; 2021 Feb; 53(2):599-610. PubMed ID: 32860322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prediction of MRI-induced RF heating of active implantable medical devices using machine learning.
    Vu J; Sanpitak P; Bhusal B; Jiang F; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2020 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the trajectory of deep brain stimulation leads reduces RF heating during MRI at 3 T: Characteristics and clinical translation.
    Vu J; Bhusal B; Rosenow J; Pilitsis J; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T.
    Golestanirad L; Kazemivalipour E; Keil B; Downs S; Kirsch J; Elahi B; Pilitsis J; Wald LL
    PLoS One; 2019; 14(8):e0220043. PubMed ID: 31390346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wire-based sternal closure: MRI-related heating at 1.5 T/64 MHz and 3 T/128 MHz based on simulation and experimental phantom study.
    Zheng J; Xia M; Kainz W; Chen J
    Magn Reson Med; 2020 Mar; 83(3):1055-1065. PubMed ID: 31468593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Device Configuration and Patient's Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants During MRI: An Experimental Study at 1.5T and 3T.
    Bhusal B; Nguyen BT; Vu J; Elahi B; Rosenow J; Nolt MJ; Pilitsis J; DiMarzio M; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5192-5197. PubMed ID: 33019155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inter-electrode RF coupling on heating patterns of wire-like conducting implants in MRI.
    Bhusal B; Bhattacharyya P; Baig T; Jones S; Martens M
    Magn Reson Med; 2022 Jun; 87(6):2933-2946. PubMed ID: 35092097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T.
    Destruel A; Fuentes M; Weber E; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jun; 81(6):3826-3839. PubMed ID: 30803001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.