These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38083061)

  • 1. MM-HAR: Multi-Modal Human Activity Recognition Using Consumer Smartwatch and Earbuds.
    Rashid N; Nemati E; Ahmed MY; Kuang J; Gao JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors.
    Zhou B; Wang C; Huan Z; Li Z; Chen Y; Gao G; Li H; Dong C; Liang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition.
    Tian Y; Zhang J; Chen L; Geng Y; Wang X
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition.
    Haresamudram H; Essa I; Plötz T
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers.
    Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HarMI: Human Activity Recognition Via Multi-Modality Incremental Learning.
    Zhang X; Yu H; Yang Y; Gu J; Li Y; Zhuang F; Yu D; Ren Z
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):939-951. PubMed ID: 34061754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition.
    Alharbi F; Ouarbya L; Ward JA
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer.
    Saeedi R; Sasani K; Norgaard S; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human activity recognition of children with wearable devices using LightGBM machine learning.
    Csizmadia G; Liszkai-Peres K; Ferdinandy B; Miklósi Á; Konok V
    Sci Rep; 2022 Mar; 12(1):5472. PubMed ID: 35361854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity.
    Khan D; Al Mudawi N; Abdelhaq M; Alazeb A; Alotaibi SS; Algarni A; Jalal A
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors.
    Boyer P; Burns D; Whyne C
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.