These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38083135)
21. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Xue YP; Jang H; Byra M; Cai ZY; Wu M; Chang EY; Ma YJ; Du J Eur Radiol; 2021 Oct; 31(10):7653-7663. PubMed ID: 33783571 [TBL] [Abstract][Full Text] [Related]
22. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation. Liyanage KA; Steward C; Moffat BA; Opie NL; Rind GS; John SE; Ronayne S; May CN; O'Brien TJ; Milne ME; Oxley TJ PLoS One; 2016; 11(6):e0155974. PubMed ID: 27285947 [TBL] [Abstract][Full Text] [Related]
23. CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI. Bontempi D; Benini S; Signoroni A; Svanera M; Muckli L Med Image Anal; 2020 May; 62():101688. PubMed ID: 32272345 [TBL] [Abstract][Full Text] [Related]
24. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks. Lucena O; Souza R; Rittner L; Frayne R; Lotufo R Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252 [TBL] [Abstract][Full Text] [Related]
25. Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation. Dieckhaus H; Meijboom R; Okar S; Wu T; Parvathaneni P; Mina Y; Chandran S; Waldman AD; Reich DS; Nair G Top Magn Reson Imaging; 2022 Jun; 31(3):31-39. PubMed ID: 35767314 [TBL] [Abstract][Full Text] [Related]
26. A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity. Lancelot S; Roche R; Slimen A; Bouillot C; Levigoureux E; Langlois JB; Zimmer L; Costes N PLoS One; 2014; 9(10):e109113. PubMed ID: 25330005 [TBL] [Abstract][Full Text] [Related]
27. Automatic Segmentation of Bone Selective MR Images for Visualization and Craniometry of the Cranial Vault. Zimmerman CE; Khandelwal P; Xie L; Lee H; Song HK; Yushkevich PA; Vossough A; Bartlett SP; Wehrli FW Acad Radiol; 2022 Mar; 29 Suppl 3(Suppl 3):S98-S106. PubMed ID: 33903011 [TBL] [Abstract][Full Text] [Related]
28. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI. Winther H; Hundt C; Ringe KI; Wacker FK; Schmidt B; Jürgens J; Haimerl M; Beyer LP; Stroszczynski C; Wiggermann P; Verloh N Rofo; 2021 Mar; 193(3):305-314. PubMed ID: 32882724 [TBL] [Abstract][Full Text] [Related]
29. Automated Cervical Spinal Cord Segmentation in Real-World MRI of Multiple Sclerosis Patients by Optimized Hybrid Residual Attention-Aware Convolutional Neural Networks. Bueno A; Bosch I; Rodríguez A; Jiménez A; Carreres J; Fernández M; Marti-Bonmati L; Alberich-Bayarri A J Digit Imaging; 2022 Oct; 35(5):1131-1142. PubMed ID: 35789447 [TBL] [Abstract][Full Text] [Related]
30. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
31. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine. Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600 [TBL] [Abstract][Full Text] [Related]
32. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
33. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
34. Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks. Jimenez-Pastor A; Lopez-Gonzalez R; Fos-Guarinos B; Garcia-Castro F; Wittenberg M; Torregrosa-Andrés A; Marti-Bonmati L; Garcia-Fontes M; Duarte P; Gambini JP; Bittencourt LK; Kitamura FC; Venugopal VK; Mahajan V; Ros P; Soria-Olivas E; Alberich-Bayarri A Eur Radiol; 2023 Jul; 33(7):5087-5096. PubMed ID: 36690774 [TBL] [Abstract][Full Text] [Related]
35. Mutual enhancing learning-based automatic segmentation of CT cardiac substructure. Momin S; Lei Y; McCall NS; Zhang J; Roper J; Harms J; Tian S; Lloyd MS; Liu T; Bradley JD; Higgins K; Yang X Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447610 [No Abstract] [Full Text] [Related]
36. Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. Lee B; Yamanakkanavar N; Choi JY PLoS One; 2020; 15(8):e0236493. PubMed ID: 32745102 [TBL] [Abstract][Full Text] [Related]
37. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Naceur MB; Saouli R; Akil M; Kachouri R Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717 [TBL] [Abstract][Full Text] [Related]
38. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
39. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM. Hu H; Pan N; Frangi AF Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366 [TBL] [Abstract][Full Text] [Related]
40. Automatic segmentation of high-risk clinical target volume for tandem-and-ovoids brachytherapy patients using an asymmetric dual-path convolutional neural network. Cao Y; Vassantachart A; Ragab O; Bian S; Mitra P; Xu Z; Gallogly AZ; Cui J; Shen ZL; Balik S; Gribble M; Chang EL; Fan Z; Yang W Med Phys; 2022 Mar; 49(3):1712-1722. PubMed ID: 35080018 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]