These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38083150)

  • 21. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces.
    Zhang X; Libedinsky C; So R; Principe JC; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantized Attention-Gated Kernel Reinforcement Learning for Brain-Machine Interface Decoding.
    Wang F; Wang Y; Xu K; Li H; Liao Y; Zhang Q; Zhang S; Zheng X; Principe JC
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):873-886. PubMed ID: 26625423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical Dynamical Model for Multiple Cortical Neural Decoding.
    Liu X; Shen X; Chen S; Zhang X; Huang Y; Wang Y; Wang Y
    Neural Comput; 2021 Apr; 33(5):1372-1401. PubMed ID: 34496393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Covariant Cluster Transfer for Kernel Reinforcement Learning in Brain-Machine Interface.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3086-3089. PubMed ID: 33018657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing relationships between reinforcement learning and simple behavioral strategies to understand probabilistic reward learning.
    Iyer ES; Kairiss MA; Liu A; Otto AR; Bagot RC
    J Neurosci Methods; 2020 Jul; 341():108777. PubMed ID: 32417532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Sanchez JC; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5402-5. PubMed ID: 24110957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse Reinforcement Learning in Tracking Control Based on Inverse Optimal Control.
    Xue W; Kolaric P; Fan J; Lian B; Chai T; Lewis FL
    IEEE Trans Cybern; 2022 Oct; 52(10):10570-10581. PubMed ID: 33877993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Multi-Dimensional Goal Aircraft Guidance Approach Based on Reinforcement Learning with a Reward Shaping Algorithm.
    Zu W; Yang H; Liu R; Ji Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface.
    Zhang P; Chao L; Chen Y; Ma X; Wang W; He J; Huang J; Li Q
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online Estimating Pairwise Neuronal Functional Connectivity in Brain-Machine Interface.
    Chen S; Zhang X; Shen X; Huang Y; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():271-281. PubMed ID: 37995162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.