These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38083150)

  • 41. Multivariate Encoding Analysis of Medial Prefrontal Cortex Cortical Activity during Task Learning.
    Tan J; Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6699-6702. PubMed ID: 34892645
    [TBL] [Abstract][Full Text] [Related]  

  • 42. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Near Perfect Neural Critic from Motor Cortical Activity Toward an Autonomously Updating Brain Machine Interface.
    An J; Yadav T; Ahmadi MB; Tarigoppula VSA; Francis JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():73-76. PubMed ID: 30440344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reward-Mediated, Model-Free Reinforcement-Learning Mechanisms in Pavlovian and Instrumental Tasks Are Related.
    Moin Afshar N; Cinotti F; Martin D; Khamassi M; Calu DJ; Taylor JR; Groman SM
    J Neurosci; 2023 Jan; 43(3):458-471. PubMed ID: 36216504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reinforcement learning and its connections with neuroscience and psychology.
    Subramanian A; Chitlangia S; Baths V
    Neural Netw; 2022 Jan; 145():271-287. PubMed ID: 34781215
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reinforcement learning on slow features of high-dimensional input streams.
    Legenstein R; Wilbert N; Wiskott L
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20808883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.
    Marsh BT; Tarigoppula VS; Chen C; Francis JT
    J Neurosci; 2015 May; 35(19):7374-87. PubMed ID: 25972167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes.
    Lin YC; Chou C; Yang SH; Lai HY; Lo YC; Chen YY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2539-2542. PubMed ID: 30440925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kernel Temporal Differences for EEG-based Reinforcement Learning Brain Machine Interfaces.
    Thapa BR; Tangarife DR; Bae J
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3327-3333. PubMed ID: 36086236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biased Pressure: Cyclic Reinforcement Learning Model for Intelligent Traffic Signal Control.
    Ibrokhimov B; Kim YJ; Kang S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.