These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38083164)

  • 21. Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction.
    Wang W; Cao N
    Magn Reson Imaging; 2018 Nov; 53():89-97. PubMed ID: 29886107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regularization Solver Guided FISTA for Electrical Impedance Tomography.
    Wang Q; Chen X; Wang D; Wang Z; Zhang X; Xie N; Liu L
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography.
    Feng J; Sun Q; Li Z; Sun Z; Jia K
    J Biomed Opt; 2018 Dec; 24(5):1-12. PubMed ID: 30569669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation.
    Hu Z; Liang J; Yang W; Fan W; Li C; Ma X; Chen X; Ma X; Li X; Qu X; Wang J; Cao F; Tian J
    Opt Express; 2010 Nov; 18(24):24441-50. PubMed ID: 21164791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method.
    Zhong J; Tian J; Yang X; Qin C
    Ann Biomed Eng; 2011 Jun; 39(6):1728-35. PubMed ID: 21301961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalized deep iterative reconstruction for sparse-view CT imaging.
    Su T; Cui Z; Yang J; Zhang Y; Liu J; Zhu J; Gao X; Fang S; Zheng H; Ge Y; Liang D
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34847538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm].
    Guo Q; Teng Y; Tong C; Li D; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):855-862. PubMed ID: 33140610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction Method for Optical Tomography Based on the Linearized Bregman Iteration with Sparse Regularization.
    Leng C; Yu D; Zhang S; An Y; Hu Y
    Comput Math Methods Med; 2015; 2015():304191. PubMed ID: 26421055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust reconstruction of fluorescence molecular tomography based on adaptive adversarial learning strategy.
    Zhang P; Song F; Ma C; Liu Z; Wu H; Sun Y; Feng Y; He Y; Zhang G
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36696695
    [No Abstract]   [Full Text] [Related]  

  • 31. Multispectral hybrid Cerenkov luminescence tomography based on the finite element SPn method.
    Liu H; Yang X; Song T; Bao C; Shi L; Hu Z; Wang K; Tian J
    J Biomed Opt; 2015 Aug; 20(8):86007. PubMed ID: 26271053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.
    Xu Q; Yang D; Tan J; Sawatzky A; Anastasio MA
    Med Phys; 2016 Apr; 43(4):1849. PubMed ID: 27036582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Faster and More Accurate Iterative Threshold Algorithm for Signal Reconstruction in Compressed Sensing.
    Wei J; Mao S; Dai J; Wang Z; Huang W; Yu Y
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-Time Decoding of Snapshot Compressive Imaging Using Tensor FISTA-Net.
    Liu XY; Huang Q; Han X; Wu B; Kong L; Walid A; Wang X
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37267142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L1-regularized Cerenkov luminescence tomography with a SP3 method and CT fusion.
    Zhong J; Tian J; Yang X; Qin C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6158-61. PubMed ID: 22255745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpretable model-driven projected gradient descent network for high-quality fDOT reconstruction.
    Hua Y; Jiang Y; Liu K; Luo Q; Deng Y
    Opt Lett; 2022 May; 47(10):2538-2541. PubMed ID: 35561395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks.
    Chen X; Meng Y; Wang L; Zhou W; Chen D; Xie H; Ren S
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38394682
    [No Abstract]   [Full Text] [Related]  

  • 38. Unrolled-DOT: an interpretable deep network for diffuse optical tomography.
    Zhao Y; Raghuram A; Wang F; Kim SH; Hielscher A; Robinson JT; Veeraraghavan A
    J Biomed Opt; 2023 Mar; 28(3):036002. PubMed ID: 36908760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media.
    Yuliansyah DR; Pan MC; Hsu YF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning Diffuse Optical Tomography.
    Yoo J; Sabir S; Heo D; Kim KH; Wahab A; Choi Y; Lee SI; Chae EY; Kim HH; Bae YM; Choi YW; Cho S; Ye JC
    IEEE Trans Med Imaging; 2020 Apr; 39(4):877-887. PubMed ID: 31442973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.