These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38083171)

  • 21. Selective cortical representation of attended speaker in multi-talker speech perception.
    Mesgarani N; Chang EF
    Nature; 2012 May; 485(7397):233-6. PubMed ID: 22522927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech.
    Fiedler L; Wöstmann M; Graversen C; Brandmeyer A; Lunner T; Obleser J
    J Neural Eng; 2017 Jun; 14(3):036020. PubMed ID: 28384124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.
    Khalighinejad B; Cruzatto da Silva G; Mesgarani N
    J Neurosci; 2017 Feb; 37(8):2176-2185. PubMed ID: 28119400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning for decoding listeners' attention from electroencephalography evoked by continuous speech.
    de Taillez T; Kollmeier B; Meyer BT
    Eur J Neurosci; 2020 Mar; 51(5):1234-1241. PubMed ID: 29205588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards decoding selective attention through cochlear implant electrodes as sensors in subjects with contralateral acoustic hearing.
    Aldag N; Büchner A; Lenarz T; Nogueira W
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35062007
    [No Abstract]   [Full Text] [Related]  

  • 27. Neural Markers of Speech Comprehension: Measuring EEG Tracking of Linguistic Speech Representations, Controlling the Speech Acoustics.
    Gillis M; Vanthornhout J; Simon JZ; Francart T; Brodbeck C
    J Neurosci; 2021 Dec; 41(50):10316-10329. PubMed ID: 34732519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speech prosody supports speaker selection and auditory stream segregation in a multi-talker situation.
    Kovács P; Tóth B; Honbolygó F; Szalárdy O; Kohári A; Mády K; Magyari L; Winkler I
    Brain Res; 2023 Apr; 1805():148246. PubMed ID: 36657631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EEG-based auditory attention detection: boundary conditions for background noise and speaker positions.
    Das N; Bertrand A; Francart T
    J Neural Eng; 2018 Dec; 15(6):066017. PubMed ID: 30207293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of selective attention and speech acoustics on neural speech-tracking in a multi-talker scene.
    Rimmele JM; Zion Golumbic E; Schröger E; Poeppel D
    Cortex; 2015 Jul; 68():144-54. PubMed ID: 25650107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving competing voices segregation for hearing impaired listeners using a low-latency deep neural network algorithm.
    Bramsløw L; Naithani G; Hafez A; Barker T; Pontoppidan NH; Virtanen T
    J Acoust Soc Am; 2018 Jul; 144(1):172. PubMed ID: 30075667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.
    Makov S; Sharon O; Ding N; Ben-Shachar M; Nir Y; Zion Golumbic E
    J Neurosci; 2017 Aug; 37(32):7772-7781. PubMed ID: 28626013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Human Neural Alpha Response to Speech is a Proxy of Attentional Control.
    Wöstmann M; Lim SJ; Obleser J
    Cereb Cortex; 2017 Jun; 27(6):3307-3317. PubMed ID: 28334352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroencephalographic Signatures of the Neural Representation of Speech during Selective Attention.
    Viswanathan V; Bharadwaj HM; Shinn-Cunningham BG
    eNeuro; 2019; 6(5):. PubMed ID: 31585928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Spectral Degradation on Attentional Modulation of Cortical Auditory Responses to Continuous Speech.
    Kong YY; Somarowthu A; Ding N
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):783-96. PubMed ID: 26362546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal-ventral pathway for speech.
    Bidelman GM; Mahmud MS; Yeasin M; Shen D; Arnott SR; Alain C
    Brain Struct Funct; 2019 Nov; 224(8):2661-2676. PubMed ID: 31346715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hearing-Aid Directionality Improves Neural Speech Tracking in Older Hearing-Impaired Listeners.
    Petersen EB
    Trends Hear; 2022; 26():23312165221099894. PubMed ID: 35730193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential modulation of auditory responses to attended and unattended speech in different listening conditions.
    Kong YY; Mullangi A; Ding N
    Hear Res; 2014 Oct; 316():73-81. PubMed ID: 25124153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ear-EEG Measures of Auditory Attention to Continuous Speech.
    Holtze B; Rosenkranz M; Jaeger M; Debener S; Mirkovic B
    Front Neurosci; 2022; 16():869426. PubMed ID: 35592265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of stimulus intensity on neural envelope tracking.
    Verschueren E; Vanthornhout J; Francart T
    Hear Res; 2021 Apr; 403():108175. PubMed ID: 33494033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.