These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38083187)

  • 21. Virtual Physical Coupling of Two Lower-Limb Exoskeletons.
    Kucuktabak EB; Wen Y; Short M; Demirbas E; Lynch K; Pons J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A lower limb exoskeleton control system based on steady state visual evoked potentials.
    Kwak NS; Müller KR; Lee SW
    J Neural Eng; 2015 Oct; 12(5):056009. PubMed ID: 26291321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.
    de Miguel-Fernández J; Lobo-Prat J; Prinsen E; Font-Llagunes JM; Marchal-Crespo L
    J Neuroeng Rehabil; 2023 Feb; 20(1):23. PubMed ID: 36805777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Augmented Reality Feedback for Exoskeleton-Assisted Walking. A Feasibility Study.
    Pinto-Fernandez D; Gomez M; Rodrigues C; Rojo A; Raya R; Rocon E; Moreno JC; Torricelli D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The improvement of the lower limb exoskeletons on the gait of patients with spinal cord injury: A protocol for systematic review and meta-analysis.
    Xue X; Yang X; Tu H; Liu W; Kong D; Fan Z; Deng Z; Li N
    Medicine (Baltimore); 2022 Jan; 101(4):e28709. PubMed ID: 35089234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton.
    Ortiz M; Ferrero L; Iáñez E; Azorín JM; Contreras-Vidal JL
    Front Bioeng Biotechnol; 2020; 8():735. PubMed ID: 33014987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Utility of Crutch Force Sensors to Predict User Intent in Assistive Lower Limb Exoskeletons.
    Fong J; Bernacki K; Pham D; Shah R; Tan Y; Oetomo D
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decoding Brain Signals to Classify Gait Direction Anticipation.
    Vaghei Y; Park EJ; Arzanpour S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():309-312. PubMed ID: 36086221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential.
    Tao T; Jia Y; Xu G; Liang R; Zhang Q; Chen L; Gao Y; Chen R; Zheng X; Yu Y
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608339
    [No Abstract]   [Full Text] [Related]  

  • 36. Use of Lower Limb Exoskeletons as an Assessment Tool for Human Motor Performance: A Systematic Review.
    Moeller T; Moehler F; Krell-Roesch J; Dežman M; Marquardt C; Asfour T; Stein T; Woll A
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors.
    Barria P; Pino A; Tovar N; Gomez-Vargas D; Baleta K; Díaz CAR; Múnera M; Cifuentes CA
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene.
    Tang Z; Wang H; Cui Z; Jin X; Zhang L; Peng Y; Xing B
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4390-4401. PubMed ID: 37910412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain-actuated gait trainer with visual and proprioceptive feedback.
    Liu D; Chen W; Lee K; Chavarriaga R; Bouri M; Pei Z; Del R Millán J
    J Neural Eng; 2017 Oct; 14(5):056017. PubMed ID: 28696340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.