These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38083218)

  • 1. Validation of the Human Arm Stiffness Estimation Method Developed for Overground Physical Interaction Experiments.
    Kamma TK; Regmi S; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction.
    Regmi S; Burns D; Song YS
    Sci Rep; 2022 Nov; 12(1):18767. PubMed ID: 36335247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing small interaction forces through proprioception.
    Rashid F; Burns D; Song YS
    Sci Rep; 2021 Nov; 11(1):21829. PubMed ID: 34750408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal configurations for stiffness and compliance in human & robot arms.
    Woolfrey J; Ajoudani A; Lu W; Natale L
    PLoS One; 2024; 19(5):e0302987. PubMed ID: 38809855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Human Wrist Stiffness during a Tooling Task.
    Phan GH; Hansen C; Tommasino P; Budhota A; Mohan DM; Hussain A; Burdet E; Campolo D
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the sensitivity to small interaction forces in humans
    Rashid F; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6066-6069. PubMed ID: 34892500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the patient's contribution during robot-assisted therapy.
    Guidali M; Keller U; Klamroth-Marganska V; Nef T; Riener R
    J Rehabil Res Dev; 2013; 50(3):379-94. PubMed ID: 23881764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats.
    Song YS; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):591-9. PubMed ID: 25675461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robotic manipulator for the characterization of two-dimensional dynamic stiffness using stochastic displacement perturbations.
    Acosta AM; Kirsch RF; Perreault EJ
    J Neurosci Methods; 2000 Oct; 102(2):177-86. PubMed ID: 11040414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial.
    Amano Y; Noma T; Etoh S; Miyata R; Kawamura K; Shimodozono M
    Biomed Eng Online; 2020 May; 19(1):28. PubMed ID: 32375788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.
    Keller U; Schölch S; Albisser U; Rudhe C; Curt A; Riener R; Klamroth-Marganska V
    PLoS One; 2015; 10(5):e0126948. PubMed ID: 25996374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.
    Piovesan D; Pierobon A; DiZio P; Lackner JR
    PLoS One; 2012; 7(3):e33086. PubMed ID: 22448233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism.
    Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J
    Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multijoint arm stiffness during movements following stroke: implications for robot therapy.
    Piovesan D; Casadio M; Mussa-Ivaldi FA; Morasso PG
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975372. PubMed ID: 22275576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human arm endpoint-impedance in rhythmic human-robot interaction exhibits cyclic variations.
    Fortineau V; Siegler IA; Makarov M; Rodriguez-Ayerbe P
    PLoS One; 2023; 18(12):e0295640. PubMed ID: 38096319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-Based Estimation of Ankle Joint Stiffness During Dynamic Tasks: a Validation-Based Approach.
    Cop CP; Durandau G; Esteban AM; van 't Veld RC; Schouten AC; Sartori M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4104-4107. PubMed ID: 31946773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.