These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38083218)

  • 21. On the effect of muscular cocontraction on the 3-D human arm impedance.
    Patel H; O'Neill G; Artemiadis P
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2602-8. PubMed ID: 24835125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review.
    Abdulazeem N; Hu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial Calibration of Humanoid Robot Flexible Tactile Skin for Human-Robot Interaction.
    Chefchaouni Moussaoui S; Cisneros-Limón R; Kaminaga H; Benallegue M; Nobeshima T; Kanazawa S; Kanehiro F
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical human interaction for an inflatable manipulator.
    Sanan S; Ornstein MH; Atkeson CG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7401-4. PubMed ID: 22256049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smooth leader or sharp follower? Playing the mirror game with a robot.
    Kashi S; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are impact accelerations during treadmill running representative of those produced overground?
    Dillon S; Burke A; Whyte EF; O'Connor S; Gore S; Moran KA
    Gait Posture; 2022 Oct; 98():195-202. PubMed ID: 36166957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects.
    Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE
    J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Peshkin MA; Kuiken TA
    J Biomech Eng; 2013 Aug; 135(8):81009. PubMed ID: 23719922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stochastic estimation of human shoulder impedance with robots: an experimental design.
    Park K; Chang PH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975461. PubMed ID: 22275659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs.
    Maldonado B; Mendoza M; Bonilla I; Reyna-Gutiérrez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3578-81. PubMed ID: 26737066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis.
    Piovesan D; Pierobon A; DiZio P; Lackner JR
    J Neurophysiol; 2013 Nov; 110(10):2484-96. PubMed ID: 23945781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Intelligent Control of Two Link Robot Arm by Considering Human Voluntary Components.
    Deng M; Kubota S; Xu Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Should object function matter during modeling of functional reach-to-grasp tasks in robot-assisted therapy?
    Nathan DE; Johnson MJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5695-8. PubMed ID: 17947163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trajectory Decoding of Arm Reaching Movement Imageries for Brain-Controlled Robot Arm System.
    Jeong JH; Shim KH; Kim DJ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5544-5547. PubMed ID: 31947110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.